Noesis

The Journal of the Noetic Society
 (Issue 18, September 1987)

Editorial
Ronald K. Hoefiln
P.O. Box 7430
New York, NY 10116

New member: C. M. Lengan, who was anong the nine persons insted in issue I6, page 1 , has agreed to foin. All I know about Mr. Langan ercept his address is that he is a 35 -year-old male.

Joshua Taylor, who was another of the nine persons listed as newly gualified in 1ssue 16, apparently collaborated w_{i} th sonecne else on the fiega Test, so I disqualified him from joining.

I sent copies of issue 17 to six of the seven remaining persons on the list in hopes that perhaps one or two more might decide to join us. I ran out of spere copies before getting to the final person on the iist.

Back issues: S. H. Woolsey sent me $\$ 10.00$ for coples of all the bect issues starting with issue 1, so I will probably reduce the first eicht issues to this size and send you each a copy so that you will have a uniform set of this ne:rsletter. I hope to include the first two issues iound together along with the present issue 18 . I expect to complete this project by the time I reach issue 24 , which will probably be my last issue as editor.

Provosed peeting: The following three pages reproduce a cover letter and proposal for a general meeting of the Hoetic Society by Chris Cole. Sie asks for your input concerning the best time and place for such a meeting.

Conceming the topic of the meeting, if my tests are to be discussed, I would prefer that more general psychological and philosophical aspects of inteliigence and intelligence-testing be emphasized rather than specific reference books and the like.

Trial Test "P": The remainder of this issue is taken up with my Trial Test $\mathrm{T}^{\prime \prime}$, wifich i believe should yield enough satisfactory problems for me to complete two multiple-choice tests for omni magazine by the end of the jear. I now anticipate that the main test will consist of 48 problens, like my Mege Test, including 24 verbal analokies and 24 non-verbal oroblems. The latter, however, will not be divided into two equal syatial and numerical sections but will probably consist of eight 3-nroblen sections of the following types: (1) overlapping squares, (2) painting the sides of polyhedra black and white, (3) ants crawing along the edges of polyhedra, (4) number sequences, (5) building-block problens using lines, squares, and cubes as the "blocks", (6) three relatively easier interpenetrating-figure problems, (7) three relatively more difficultinterpenetrating-figure probiems, and (8) three riscellaneous probleas. The arswers to this test will not be revealed and the test will be scored for $\$ 5.00$. There will be a supplementary test consisting of from 40 to 48 problems, the answers to which will be provided in the test booklet, which will be sold for an additional $\$ 5.00$.

Dear Ron:

Enclosed please find the submission for Noesis about the proposed meeting. I have tried to make it dark enough that you don't need to retype it. I don't think $P=N P$ will attract enough general interest, although in the long run it certainly interestor me (and Dane. I have abandoned the idea of a Summer meeting, and instead have solicited suggestions.

I looked at Kevin Langdon's test. I don't think you need to worry: the problems are not interesting enoch to work on.

I apologize for not having returned Trial Test D yet. I am about finished, but given my current schedule I think it will take another couple - 2 -
of weeks.
As far as legitimizing your tests and attracting a larger membership, have you considered distribution in a more "mainstream" majarme? I wonder if Michael Stueben of "Discover" would be interested? He seems like the right kind of person, and the magazine has had problems with low subscriptions. Your test could be a real boost. Especially since the magazine was recently purchasal. Worth a try?

Sincerely,
P.S. By the way, the same remarks apply to "Scientifi ce American."

```
                        Chris Cole
            P. O. Box }954
Newport Beach, CA 92658
    714 855 3923 (work)
    714720 1761 (home)
```

While 1 have not given up on the idea of establishing an online network of Noetic Society members (more about this later). I would like to try to organize a meeting of the members. The primary purpose of the meeting would be to form more cohesive and productive society, but this goal is too vague to motivate people to travel to a meeting. Dean and I have discussed more tempting meeting agendas, but we do not know enough about the members interests to come to any firm conclusions.

However, there is one meeting topic which is presumably of interest to all society members: namely, techniques for solving Ron's tests. All of us would profit from comparing our techniques with other members'. For example, Dean and l have complled the following agenda sketch, and linvite members to add to the sketch and to call or write me about possible meeting venues and dates.

TECHNIQUES FOR SOLYING RON HOEFLIN'S TESTS
Meeting of the Noetic Society
Agenda Sketch

1. Verbal Problems
A. Written Reference Works
2. Thesauri

1i. Dictionaries
ifi. Encyclopedias
iv. Books of Quotations
v. Books of tdioms
8. Computerized Reference Works
fi. Microsoft Bookshelf
1if. University of California Meivyl
II. Quantitative Problems
A. Searching the literature
i. Institute for Scientific Information
a. Written Reference Works

1. Science Citation Index
b. Computerized Reference Works
2. Comoumath
3. SCTSearch
i1. Other Reference Works
B. Finding Patterns in Series
4. Systematic Transformation of Series

1i. N. J. A. Sloane's Handbook of Integer Sequences
ifi. Combinations of fundamentar Constants
C. Computerized Search Techniques

Trial Test "t"

Ronald K. Hoeflin
P.O. Box 7430

New York, NY 10116
This 1s the sixth test in this series. I Nill have to look at the results of this test before deciding whether another test will be needed.

The scoring fee $i s \quad \$ 5$ for members of the Noetic and Triple Nine Societies and $\$ 6$ for non-members, except for those who paid $\$ 25$ for the entire series. ("Noetic" is the new name of the Titan Society.)

As usual, you are allowed to use any reference aids but should not consult others. Allow yourself approximately a month on the test. Send your answers and acoring fee to the address given above. The fee for Triple Nine and Noetic Society members will be waived for any who consider it even a minor hardship.

Verbal Problems

You may give just the first letter of the word that you consider ta be the correct solution to each of the following:

1. Cry : Hue 1: Excursions : ?
2. 753 B.C. (geopolitics) : Zoman Empire : : 1054 A.D. (astrophysics) : ?
3. Self : Egomaniac : : Alcoholic: ?
4. Strip : Mobius : Bottle: ?
5. The set of sets that are not members of thomselves $:$ Bussell $:$: The darkness of the night sky ?
6. Measureless to man : Caverns : : Sacred River: ?
7. Koney : Yen : Paper folding: ?
8. Yearly : Annual : : Weekly: ?
9. Teaching : Pedagogic : Uplifting : ?
10. St. Jerome : Vulgate : : 70 Jewish scholars : ?

Non-Verbal Problems

11. Suppose each side of a tetrahedron is divided into four identical equilateral triangles as shown at right. Suppose that each and every triangle on all four sides of the tetrahedron is painted white or black. In how many distinctive patterns can the entire tetrahedron be
 painted, including all four sides in each pattern? Two patterns should be considered identical if one can be made the same ag the other merely by rotating the tetranedron.
12. On each aide of a cube a line is drawn from any of the four corners to the diagonally opfosite corner. Bach and every triangle thus formed is then painted either black or white. In how many distinctive ways can the entire cube thus be painted, including all six sides in each pattern and considering every pos-
 aible variation in the orientation of the diagonal lines? Two patterns should be considered identiaal if one can be made the same as the other by rotating the cube.

What number comes next in each of these sequences?
$\left.\begin{array}{lllllllllll}13 . & 0 & 9 & 23 & 30 & 35 & 49 & 58 & 73 & 94 & ? \\ \text { 14. } & 2 & 8 & 31 & 88 & 199 & 384 & 659 & 1056 & \text { ? } \\ 15 . & 2 & 8 & 2 & 3 & 4 & 9 & 4 & 5 & 9 & 8\end{array}\right) ?$
16. What is the maximum number of bounded areas possible when a triangle is intersected by three semicircles, the semicircles not necessarily being of equal size? (The endpoints of each semicricle are not joirec by a straight line.)
17. Suppose a spherical lump of clay is sliced eight times by perfectly straight (i.e., planar) knife strokes, the pieces formed thereby never being rearranged. What is the maximum number of pieces into which the sphere can thut be divided?
18. Suppose that a square sheet of floor tiling is divided by chalk marks into sixteen equal squares as depicted at right. Suppose that ten of the smaller squares are sliced off with a knife, leaving six of them connected together in one solid plece (1.e., a
 piece that could have beon formed by gluing square tiles together one by one such that each new piece added is joined to at least one of the previously laid pieces along the full length of at least one of its sides). How many distinct shapes could be formed in this way, including all six spuares in each shape and assuming that two shapes are identical (and hence are to be counted as a single shape) if one can be made to look the same as the other werely by a rigid rotation of either of the shapes without lifting any part off the floor?
19. Suppose a cubical block of material is marked off into an array of 27 identical smiller cubes as depicted at right. Supfose that 21 of the swaller cubes are sliced of f with a knife, leaving just six of them that are connected together in one solid piece (1.e., a
 piece that could have been formed by gluing the sualler cubes toge ther one by one such that each new piece edded is joined to at least one of the previjusiy laid pieces along the full surface of at least one of its six sides). How many distinct shapes could be formed in this way, including all six smaller cubes in each shape and assuming that two shapes are identical (and hence are to be counted as a single shape) if one can be made to look the same as the other from all possible perspectives merely by a rigid rotation of either of the shapes?
20. Try probiem 11 again, but this time divide each face of the tetrahedron into three (rather than four) equal triangles as shown at right. Again determine the total number of black and white patterns possible for the tetrahedron as a whole.
21. Try problem 12 again, but this time divide each face of the cube into four (rather than two) equal triangles as depicted at right. Again determine the total number of black and white patterns possible for the cube as a whole.

22. Try problem 18 again, but this time slice off any two (rather than ten) of the smaller aquares and determine how many aigrinct mapes are possible.
23. Try problem 19 again, but this time slice off any three (rather then 21) of the smaller cubes and determine how many distinct shapes. are possible. (The central or core cube may be sliced out without also removing one of the six cubes that fit againet its aix bides.)
24. There are 7 cans arranged in a circle. Each contains 6 marbles. There are a total of 21 white and 21 black marbles. whose colors are distributed randomly in the cans. Suppose you try to rearrange the marbles so that there are 6 white marbies in one can, 5 white and 1 black in another, 4 white and 2 black in another, 3 white and 3 black in another, 2 white and 4 black in another, 1 white and 5 black in another, and 6 black and 0 white in the remaining can. Suppose you must proceed clockwise, atarting at any can, and take one marble from each can, which you place in the can situated immediately on the counterclockwite side of that can. You are allowed to see the colors of all of the marbles and pick whichever color will lead most expeditiously to the completion of your tesk. You are not allowed to akip any cans as you proceed around the circle, however. If each marble moved is counted as one move, what is the maximum number of moves necessary to complete the task, assuming that ous alwaym maken the moves that will lead most expeditiousiy to the completion of the task, given all the possible initial arrangementa in which the colors of the marbies micht be found?
25. Suppose that 40 foot-long metal bars are welded together to form a 16-square-foot grid like the one iliustrated in problem 18, reteing on fiat surface. Suppose any two of the bare are bifced away so that the remaining bars all ramain connected at both ends to other bare that have not been sliced away. Hov many diatinct patterns can thus be formed, essuming that two patterna are diatinct (and hence are to je counted as different patterns) only if one cannot be made the same as the other merely by a rigid rotation of the entire pattern, not iliting any portion of the pattern off the flat aurface at any time.
26. Try problew 25 again, but this time ruppose thet 28 of the 40 bars are sliced eway. Determine how many distinct shaper can be formed in the prescribed manner with the remaining 12 bari.
27. Suppose that the illustration for problen 19 depicts 144 bars of equal length. Suppose that all but 12 of theee bars are removed and that each of the remaining bars is connected at each ond rith another of the remaining bart. Hov many different configurations can be formed by the te 12 bars, counting two configurations as different only $1 f$ one cannot be trangierned into the other by any ricid movenente of ither configuration as a molef

