Noesis

The Journal of the Hoeflin mesearch aroup

(ifsue 28, July 1988)

Mditorial

monald I. Hoerlin

P.O. Box 7430

Mev York, II 10116
The July 4th meotiog: Curie Cole suggented that there de alx threa-nour casifoumitarting at 9 a.e. and at 2 p.a. on saturday, sunday, and Monday, July 2, 3, and 4, with each of the alx anty ipated partiolpante taking aherge of ane of the diceusalam periode.

Yard gulsos: Pert of ay ome contributlon will we the testing of parificipantio on the two word quizes civen in this iome. theco quizow ure puruly for your entertalnment. If you do not come to the meting but vould like to try the quisen and cand ac your anevers prior to looking ug the enemers for yournelf, please do. Tou cen thon e日b how your responsen compare with thoas of ether andbere.

Stephen Yolfran: I belleve unris cole nentioned Mr. Velfran to rus Th a oonvoratilion a fou wontha ago in conncethon with progreas in the field of artifioini intelliconce, so I thought the elfipiag about him from the gow York flaea al cht be of interest, enpecially sinoe many of our nentoritaro litereated in cemputor coftware.

Duvid oelger: Mr, oolger, whone inguliry eoncerning the fourcolor problom oppared in the preceding fague of thia journal, sant me a cogy of an entry ebout hitin thois mo in the Mdyeot, what I attach below. I an amewht eurpriced that any matrontiotea vould have anked the quastion about whether thero vould over be anothor probion 11 ke the rour-oolor problem and veald exprean the opinion that the anevor is no. A matheasticlen oucht to know better
 Lat thoorum. If Mr. Gelger meant unaolved geanotrioal problone or topolouicul probleme, he ought have to said ceiriorder to make his quastion more preciec. My thanke to Mr. veigor, in any oase for thu 820 contricution he eat to our organdsalion gfter hla quory vel published.

Biyuiniun rocrousion: My impreusion in that the ausumptiona Dundiltho marble probice oucnt to de apelled out with eroater prociaion thum 1 oriciunily did, eapecially in an intellleance tosit, where philosophical ambizulties ought to be aroided.

Uan1: I atill havu no word from canl concerniag waen asd if Uivy TII publiuh my Titan tost. I'm athli hoparul that the test will bu publiaised by or berore the and of 1980 .

WHO'S WHO IN THE MIDWEST

CEIGER. DAVID SCOTT, mathemalician. b N.YC. Jan 3. Ifit s. Eart Kussel and Margatet Roxe Sxemit G.. utudent U Sar Cabf. |W6.31. BS. II JII. 1954 . Ph D. $1 \% 1$ Computet progiammer II III. Urtharia. 196 ath cargaged in thath research Served wilh US Armis. 1960-47 Metn Am Molh Som. Finends of Anmals

A Top Scientist's Latest: Math Software

By ANDREW POLLACK

Spertal to the Nev Yort Timet

Santa Clara, Calif., June 23 - A man widely regarded as one of the world's most brilliant scientists formally entered the computer business today with a program Intended to do for mathematics what the calculator did for arithmetic.

Stephen Wolfram, who earned a Ph.D. in physics when he was 20, is the lorce behind the new program. Mathematica, which seems to be a dream come true for math students who have trouble factoring complex polynomlals, graphing elliptical functions or calculating pi to 2,000 decimal places.

Manematica, which is also intended for use by scientists and engineers, can solve equations in algebra and calculus and draw two and three-dimensional graphs instantly.

Math Done the Oid Way

Dr. Wolfram, who is 28 years old, sold that, surprisingly, mathematics is still done largely with pencil, paper and calculator.

Whether Dr. Wolfram, a professor at the University of Illinots, proves to be as good an entrepreneur as he is a sclentist remains to be seen. His program is not the first directed at mathematics, and many prevtous ones have not been great commercial successes.

Dr. Wollram's program has attracted unusual atiention, partly because of who he is and parily because of the companies that are backing him. Steven P. Jobs, the co-founder of Apple Computer Inc. who now heads a new company called Next lnc. that is developing computers for use at colleges, said at news conference here that Next would Include a copy of Mathematica with each of its stijl unannounced machines.

Other companies, including Sun Microsystems Inc., the International Business Machines Corporation and Silicon Graphics Inc., said they would offer the program for use on their work stations, the computers intended primarily for scientific and enginecring work, although they would not include it with each ma. chine.
A version of Mathematica for the Apple Macintosh will be sold directly by Wolfram Research Inc., a 25 -person company that Dr. Wolfram set up in Champalgn, III., to develop and sell the program. Prices start at $\$ 500$ for the Macintosh version.
A Ph.D. 120
Tr. Wolfram, who was born in Britnever graduated from college but a warded a Ph.D. by the Callfornia Institute of Technology when he was only 20 . The following year he was the youngest of the original crop of people who were dubbed genluses by the MacArthur Foundation and given huge grants.

Onc of his major contributions has been In the field of cellular automata, in which complex physical systems can be viewed as a collective result of Individual components acting independently and doing relatively simple things.

To some, Dr. Wolfram's turn from physicist to software vendor might seem like the loss of a good scientist, but Dr. Wolfram denied this.
"Developing a computer language is as difficult as the most difficult science I've done," he said, and it is more useful than spending years addIng a liny new wrinkle to some arcane scientific theory.
"Unfortunately, a large fraction of the basic science that's done doesn't lead to major breakthroughs," he said. "It's solving problems that didn't need to be solved."

The New York Iumes/Terrence McCarthy
Stephen Wolfram, with a frame from his softwpre, Mathematica, that shows a tirce-dimensional plot of the wave pattern on a drum head.

Days Instead of Months

Sieve Christensen, a theoretical physicist at the University of Illinois, said that Mathematica allowed him to solve complex equations involving thousands of different terms in a few days. The alternative, he said, would have been to write his own program. That would have taken him months, he said.

William P. Thurston, a mathematks professor at Princeton University, sald Mathematica seems to be casier to use than some of lis predecessors and has better graphics.

Oher programs that can do theoretical mathemalics are Macsyma. developed years ago at the Massachusetts Institute of Technology and soid by Symbolics Inc.: Reduce, developed by the Rand Corporation: Maple, developed at the University of Waterioo in Ontario, Canada, and SMP, developed by Dr. Woliram when he was al Caltech.

Programs for PC's

Less expensive and somewhat more limited equation-solvers are offered for personal computers. They include Mathcad, by Mathsoff Inc. of Cambridge, Mass.; Eureka, by Borland International of Scolts Valley, Calif., and TK! Solver, sold by Universal Technical Systems of Rockiord 1II., program originally developed by Soliware Arts, the creator of the Visicalc spreadsheet program.
So far, many vendors have been disappointed. The market 'wasn't as big as we thought it would be because noi that many people think in equations," sald Daniel Bricklin, the founder of Software Arts.

David Blohm, the president of Mathsoft, said his company was pleased with lis sale of 30,000 Mathcad programs In a year and a half. He said Mathcad is aimed al engineers who need to do numerical calculations, while Dr. Woliram's product is more geared to theoretical mathematiclans, a much smaller market. Mathsoft said it would develop a program to work with Mathematics.

Dayesian Regression - II

Chris Cole

P. O. Box 9545

Newport Beach, C^ 92658-9545

The Principle of Insufficient Reason terminates Bayesian regression. This Principle states that if there is no reason to prefer one hypothesis over another, then the probabilities of the two hypotheses must be equal. For example, suppose we are presented with an um comtaining ten marbles, tome of which are white. There is no reason to prefer the hypothesis thal the urn contains one white marble over the hypothesca that it contains two white marbles, three white marbles, etc. According to the Principle, the probabilities of these hypotheses must be equal. Since these probabilities must sum to one. the probability of each is one tenth.

However, this reasoning is perfectly wild. If someosse hands me an um containing ten marbles (some of which are white marbles), am I really willing to bet one dollar against ten that it contains one white marble? I think not. Suppose the marbles in the um were selected by Пlipping a coin; if the coin came up heads, a white marble was put in. Then it is more likely that the um conisins five marbles than one. Suppose a die was tossed, and a white marble put in only if a one came up. Then one marble is more likely than five. Suppose the um was filled by dipping in into a bigger um containing equal numbers of white and black marbles. Then one and five would be equally likely.

There is a difference between risk and uncertainty. Risk nccurs when you know the odds; uncertainty when you do not. When faced with risk you can calculate your best option; when faced with unceriainty you cannot When faced with uncertainty you try to get more information, delay or avoid the decision, ete.

There is also a technical problem with the Principle: assigning cqual probability to all indistinguishable hypotheses leads to logical contradictions. The simplest demonstration of this problem occurs with one marble. If the competing hypotheses are white or non-white. the Principle sets the odds of white at one half. If the competing hypotheses are white, black, or red, the Principle sets the odds of white at one thitd. If the competing hypotheses are all perssibie colors, the Principle sels the odth of white at infinitesimal. These canmet all be corred. In fact. none of themare.

Yord guls one

of the following 50 vordu, 23 do not occur in Yebateria Binth
 Crictethe nuibiari of thoue vords that you belleve are not in the recular voeaulelery seotion of thet diotionary.

1. teanay-voency
2. 1tay-bitay
3. bool tube
4. couch potato
5. eexploltation
6. bleokeploitation
7. 11ckaty-apll t
8. mpay-daley
9. widet
10. Eillion
11. uh-hulk
12. theuh
13. boe-boo
14. $100-100$
15. y00-100
16. the machine
17. time travol
18. Hne warp
19. marticl mrte
20. aurtiul law
21. eye bank
22. pere oank
23. pleture
24. I-rated
25. 1rrecurdleas
26. attak-to-1 tivanesa
27. Davy Jomea
28. Sen 4112
29. Podank
30. 21mbuktu
31. E1aky-dink
32. cewi.
33. atehoo
34. kerplunk
35. yikea
36. bed (neaniag good or creat)
37. bumungeria
38. yapple
39. cooky
40. cruagy
41. alx-@-alx, or 606
42. aix-alxty-aix, or 666
43. pat-a-akk, or pattyeake
44. peokeboe (en a moun)
45. panty rald
46. Srasch (someone)
47. dlanetias
48. eagran
49. hyperapace
50. hyperdsive

According to wobstor'o Minth New Collugiate inctionary, the following 50 worde oach ontered the kolloh Iangugo In writion for. betwen the year 1500 and the pretiont. Guese the preciee date that the diotionary esolgne to each word for ita flret vritten occurrence 1) melith. write your answer to the left of eech number belaw.

1. televioton
2. TT
3. android
4. robot
5. eybors
6. epace opera
7. horee epera

- soap epera

9. apaceahp
10. epace ault
11. ectence fiation
12. sal-11
13. newapaper
14. bkymeraper
15. sipper
16. bellpeint
17. roller elrate
18. miniature coll
19. 11patiok
20. bllionalro
21. 11mousine 11beral
22. Pincorprint
23. video gane
24. artificlal intolugence
25. artificiel insomination
26. trengifinte
27. axlomatization
28. bethroors
29. bathtuv
30. tollet paper
31. MIf bang theory
32. techyon
33. ioe erean
34. bamane aplit
35. telephone (as a moun)
36. radlo (ac a noum)
37. Lrplane (an a moun)
38. Melleopter
39. orthodontion
40. mbole
41. bapeball
42. backetball
43. centrifiactioa
44. 11ght bult
45. laeser
46. melloan (as a noun)
47. ceoeyaehromous
48. typawriter
49. bloycle
50. IUlbort apace

Marilyn vos Savant:
 Janan 1988

