Noesis

The Journal of the Hoeflin Research Group
(Issue 31, October 1988)

러tarial
Ronald K. Hoeflin
P.0. Box 7430
New York, inY 10116

May's patent: Bichard W. May has been awarded a patent for his board game. I will reproduce this patent in the next issue of Moesis.

Hew noming of the Mega Test: Jaing new data concerning the distrioution of scores on the Scholastic Aptitude Test obtained by member Keith Bauiere from officials at the Educational Testing Service, I have completed a new norming of the Mega Test, which I reproduce in the present issue of Koesis.

Rockefeller grize: I recently won a national competition for a philosophical essay. Lnformation concexning this prize is reproduced in this issue.

How colleges handle satis: On the final page of this issua I repraduce a clipping from the Hew York T1mes that describes how colleges in the United Statas deal vith SiT scores when an individual attempts the test more than once.
H. W. Corley and Pamily (Photo)

The Pifth Morning of the Mega Fest
Ponald K . Hoeflin
P.O. Box 7430

Tew Tork, XY 10116
The fourth norming of the Mega Teat was based on scorea reported by Maga fent participants on five previously takan tests: the army General clasaification Pest, the California Test of Mantal Maturity, the wechalar sdult Intelligence Scale, the Stanford-Binet, and the Iaugdon idult Intelligence rest.. Three commonly reported test re-sulta-on the Scholastic Aptitude Teat, the Graduate Bocord Rome, and the Miller Analogiea reat-ware diacarded on the grounda that thoir mana and stenderd deriations vith reapect to the general population are quite uncertain.

Hecantly, however, Ireah information on the diatribution of scorea on the Scholantic Aptitude rest has been obtained by Eeith ganiere, a nember of the Hoeflin Dasearch Group, from senior atatiaticlang at the gducatianel festing Sarvico. Uaing this information, 1t is now posaible to norn the Mega reat by comparimon vith a test for which an unusually large aample is avaliable. Jor whereas most conventional intelligence teats are normed using a maple of 3,000 or 20 participanta, the new sut data conalsta of the performancen of 964,739 individuals who took the teat as bigh-achool eeniors in 1984. Moreover, this deta ehows combined verbsl and mathematical aptitude scores, wherees all previous data has consisted of separate data for the rarbal and for the mathematical portiona of the SAr. leaving the diatribution of combined acores a matter of uncertainty and conjecture.

There is atill mome uncertainty an to how the nev date relatea to the general population, alnce not all high achool seniora sttempt the saz, but using the vdncational festing sarrice's conjecture thet mare than 95x of the mont able ane percant of high achool saatora atteant the sat each year. it is poasbole to arrive at gome fasrly plaunible morae for the moge ment, which reaches the 99 th percentile at a fairly low raw acore. In fact, the reaulter are alaost identical to those arrived at in the fourth noming despite the efrikingly different cources of these two morilnge.

The preant noraing is presented in the form of aeven oharte, whoe contente an be aumarised an followa:

Gurt if chie ohart chowe the diatribution of ecores an the \sin for 964.7ts high-achool meniore in 1984 .
gharta I. Of and DI_{1} theae charte abow (A) the diatribution of an eomproportarieg geat participants, (n) the diatribution of Mege tent ram coares of these men partiol pante, and (C) a maothed Listribution of Meca seat raw eooree for thene participanta.

Chrt Fi thin chart ahowa the acores on the gu2 and on the Kega Eoat wate are equivalent to rarioue parcentilea vis-a-7ia the genaral popalation beced on comparisoas of charts A_{1}, B. and D as woll as eatinates (raported orally to relth fancore by educational geating sarvioe ofkalale) comonzaing what parcantage of hich-achool meniora at rarions abllity levels atteapt the mar and what percentage of sat Ante is from zoraly atriderte.

[^0]1984 National College-Bound Senfors SUT $V+M$ Test Score Mistributions

Score	Prequency	Cumulative frequency	Scare	Frequency	Cumulative Trequency
1600	5	944.739	1140	9.470	ค3^.691
1590	0	964.734	1130	9.715	129.221
1580	27	964.734	1120	10.293	019.506
1510	19	$9(4.707$	1110	10.639	8 c9.313
1560	39	9t4.688	1100	11.136	798.574
1550	75	914.049	1090	11,268	767.430
1540	96	9t. 574	1080	11.713	776.150
1530	108	964.478	1070	12.224	784.437
1520 1510	188	$9 \mathrm{Ct.370}$	1060	12.052	152.213
1310 1500	217	$9+4.182$	1050	13.057	739.561
1500 1490	278 316	943.965	1040	13.733	776.504
1480	316 409	963,687 963.371	1030	14.064	712,771
1470	473	962.967	1020 1010	14.333 15.109	690,707
1460	617	962,494	1000	15.109 15.082	684.374 869.265
1450	601	9t1.877	990	15.002	609.265
1440	795	9 ± 1.276	980	15.490	630.065
1430	A 74	980.481	970	15.566	623.625
1420	1.071	959.607	960	18.294	80.099
1410	1.196	958.536	950	16.368	591.765
1400 1390	1.323	957.340	490	16,640	575.397
1390 1360	1.439 1.821	950.017	- 30	16.899	598.757
1370	1.821 1.871	954.578 952.957	920	16.539	541.858
1360	2.028	952.957	910	17.351	525.319
1330	2.267	949.058	900	17.089	507.968
1340	2.495	946.791	890	17.138 18.936	490.879
1330	2.698	944.296	880	$\begin{aligned} & 18.936 \\ & 17.733 \end{aligned}$	
1320	3.155	911.59	880		446,804 $439.57 ?$
1310	3.334	938.443	850	17.155 17.939	49.372 478.917
1300	3.661	935.109	840	16.933	478.117 404.978
1290	3.730	$9 ? 1.448$	830	16.8 .81	304.978 3045
1270	4.099 4.393	927.718 923.619	820	16.903	371.249
1260	4.393 4.762	923.619 919.226	810	18.639	344,341
1250	4.962	919.226	800	16.061	337.702
1240	5,623	9 9 9.541	790	15.082	321.641
1230	5.701	9 C 3.918	780	15.540	3C5.779
1220	6.143	e9m. 217	770	15.e日1	290.239
1210	6.747	092.074	760	14.992	274.358
1200	0.678	025.277	750	14.778	258.3n6
1190	7.091	878.399	740	14.413	244.588
1180	7.500	P71.300	730	14.001	230.174
1170	7.981	Me3.808	720	13.761	216.114
1160	0.346	PS5,827	710	13.365	202.353
1150	6.140	P97.48)	700	12.795	1月4.980

Chart A (continued)

Score	Prequency	Cumulative frequency
690	12.694	176.193
680	11.942	164.099
670	11.579	152.157
680	10.532	100.578
690	10.727	130.046
640	8.990	119.319
630	9.674	109.329
620	9.512	99.655
610	P.621	90.143
600	1.417	A1.522
590	7.758	73.11 C
500	7.304	65.157
570	7.139	$57.04 ?$
360	6.412	50.709
530	5.979	44.797
340	5.654	38, 123
330	5.c86	37.659
570	4.796	27.583
510	1.216	22.797
500	3.769	1 P. 571
440	3.275	14.807
480	2.212	11.527
670	2.439	8.715
100	1.785	6.276
450	1.737	4.491
-40	1.107	7.754
- 30	665	1.647
410	411	942
110	326	551
100	204	225
340	0	21
3×0	1	21
370	3	20
360	1	17
390	3	16
140	1	13
330	1	12
320	2	11
310	2	9
\$00	0	7
200	0	7
8 PO	0	7
270	3	7
260	3	4
750	0	1
840	1	1
230	0	0
220	0	0
210	0	0
200	0	0

Reprinted by
permisaion of the Educational taating Sorvice, the copyright boldex.

Di stribution of SAT Scores Reported by Mega Test Participants and the Distribution of Their Mega Test Raw Scores

- 5 -

Chart E

(I)	(2)	(3)	(4)	(5)	(6)
Percentile	Equivalent atandard deviations above meas (fram atandard statistical tables.)	Adjusted number of U.3. 18-year-olds exceeding this level in 1984	Equivalent S.A.T. level (from Chart A)	shmber of S.A.T. scores reported by Mega Test partici- pants that exceeded this level (fram Chart B)	Equivalent Mega Test raw scores (comparing Charts B and D)
90	1:3	322,701	987	219	4
97	1.9	100,844	1175	207	7
99	2.3	32,270	1288	174	12.5
99.7	2.7	10,212	1385	108	19
99.9	3.1	3,227	1449	71	23.5
99.97	3.4	1.021	1496	38	29
99.99	3.7	1.323	1529	19	33
99.997	4.0	102	1553	9	36.
99.999	4.3 4.5	32 10	1575 1583	2	40.5
99.9997	4.5 4.8	10	1583 1599	${ }_{0}^{2}$	42.5 44.5

Comments on Column (1): The 91, 99.1, 99.97, etc. percentiles are aboreviations for the $96.837723,99.6837723,99.96837723$, etc., percentiles. The latter even out the ratios between each succesaive percentile auch that $1 / 3.162277$ as many people socre above the 96.837723 percentila as score above the 90 percentile, $1 / 3.1622 / 7$ as many acore above the 99 percentile as above the 96.8377223 percentile, and so forth.

Column (2): Since I am mapping raw scores on the Mega rest into a normal or Gausaian distribution curve, each percentile will always equate with a angle apecific atandard deviation, as specified in atandard atatistical tables.

Column (3): The Reader's Digest M1manac and Yearbook for 1981 estimates the number of high-achool graduates in the u.S. in 1984 at 2,684,000 (see p. 202). The Hew York Timea reported in its Sept. 22, 1988 issue that 86.5 percent or $25-34$ year olds in the U.S. were highachool graduates. This would put the total 18 -pear-old population in 1984 at about 3,102,890 (solving for x in the equation 2,684,000 $=$ -865x). The Elucetional Testing Service estimates thet more than 95\% of those in the top one percentin ability in the U.S. take the S.A.T. It also says thet soout 2\% of S.A.T. participants are forelgners, who acare mostly in the tap 25\% on the test. So I adjusted the 3,102,890 ligure down by $4 x$ to adjust for the non-participation of some of the ablest U.S. 18-year-olds, and up again by 8% to adjust for the participation of foreigners, for a net gain of about 4x to 3,227,006. Prom this ligure I derived the figures ahown in Column (3).

Column (4): I assumed that the number of people achieving each acore level on the S.A.T. (see Graph A) are spread evenly over a 10paint interval etarting 5 paints belov the specified acore and ending

5 ppints above that specified score. Thus, for example, the top 5 scorers would be spread over the interval from 1595 to 1605, with one person in the interval 1595 to 1597, one in the interval 1597 to 1599, and so forth. So since about 3 people should be credited vith a one-in-a-million performance on the S.A.T. (the 99.9999 percentile), it follows that this percentile should be aet equal to an S.A.T. score of about 1599.

Column (5): of thase who attempted the Mega Fest, 222 reported S.A.T. scores. If one individual reported two S.A.t. acores, the first of these vas eliminated on the assumption that it was achiered during the Junior rather than senior year in high school. Scores froun 1245 to 1254 were rounded to 1250, and likewise for the other acore intervals. Then it was assumed that all those scoring from 1245 to 1254 are spread evenly over the interval from 1245 to 1255 for purposes of determining how many participants scored over each of the S.A.T. scores specified in column (4).

Column (6): Chart C ahowing Mega Test raw scores for the 222 who reported S.A.T. acores was smoothed out to yield the distribution abown in chart D. of the 222 reported S.A.T. scores, 219 were above 987 (veroal and math aptitude combined), which I rate as equivalent to the 90 percentile for all U.S. 18-year-olds. In Chart D, 219 have Mega Test raw scores of 4 or above, ao I set a raw score of 4 on the Mega Test equal to 987 on the S.A.T. and to the 90 percentile for the general population. I did likewise for each of the other percentile levels above 90. The smoothed chart (Chart D) does not yield significantily different results from the unsmoothed chart (Chart c) but was adopted primarily to give a more even distribution for Mega jest raw scores above 36 , where the amount of data from those reporting S.A.T. scores is rather thin. the following comparison can be made between the rasults yielded by the unsmoothed data (Chart c) and the smoothed data (Chart D) as well as the Fourth homing of the Mega Test.

Equivalences Hetween Percentiles and Mega Pest kaw Scores

Percentile	Smoothed (Chart D)	Ungmoothed (Chart C)	4th Norming
90	4	4	5
97	7	7	7
99	12.5	12.5	13
99.7	19	19.5	19
99.9	23.5	23.5	24
99.97	29	28.5	29
99.99	33	33	32.5
99.997	36	36	36
99.999	40.5	41.5	40
99.9997	42.5	43.5	43
99.9999	44.5	44.5	45

Here I have rounded the Mega Teat raw acores to the nearest half point. The Educational Testing Service assumes that only about 75 rather than 95% of thoae in the top 10% in ability try the S.A.T. but even making an adjustment for this at the 90 percentile puts the S.A.F. acore equivalent to this percentile at about 1025 rather than 987. This does not alter my reaults because there are atill only 3 reported S.1.T. acores balow 1025 in Chart B, just as there are also jut 3 belaw 987, leaving the equivalent Moga qest raw score at 4.

Chart P

Chart G
IQ's and Percentiles per Raw Score Based on Chart P

Mega Raw Score	Standard deviation	I. $0^{\text {e }}$	Percentile	Rarity
1	0.00	100	50	1 in 2
2	0.50	108	69	1 in 3
3	1.00	116	84	1 in 6
4	1.25	120	89	1 in 9
5	1.50	124	93	1 in 14
6	1.69	127	95	1 in 20
7	1.88	130	97.0	1 in 33
8	2.00	132	97.7	1 in 43
9	2.08	134	98.1	1 in 53
10	2.19	135	98.6	1 in 71
11	2.25	136	98.8	1 in 83
12	2.33	137	99.0	1 in 100
13	2.40	138	99.2	1 in 125
14	2.46	139	99.3	1 in 143
15	2.53	140	99.4	1 in 167
16	2.59	141	99.5	1 in 200
17	2.67	143	99.6	1 in 250
18	2.73	144	99.7	1 in 333
19	2.81	145	99.75	1 in 400
20	2.88	146	99.80	1 in 500
21	2.94	147	99.84	1 in 625
22	3.00	148	99.87	1 in 769
23	3.06	149	99.89	1 in 909
24	3.14	150	99.92	1 in 1,250
25	3.21	151	99.93	1 in 1.429
26	3.27	152	99.95	1 in 2,000
27	3.33	153	99.96	1 in 2,500
28	3.41	155	99.97	1 in 3,333
29	3.48	156	99.975	1 in 4,000
30	3.54	157	99.980	1 in 5,000
31	3.60	158	99.984	1 in 6,250
32	3.68	159	99.988	1 in 8,333
33	3.75	160	99.991	$\frac{1}{1}$ in 11, 111
34	3.81	161	99.993	1 in 14,286
35	3.88	162	99.995	1 in 20,000
36	3.96	163	99.996	1 in 25,000
37	4.02	164	99.997	1 in 33,333
38	4.08	165	99.9977	1 in 43,478
39	4.14	166	49.9983	1 in 58,824
40	4.23	168	99.9988	1 in 83,333
41	4.31	169	99.9992	1 in 125,000
42	4.42	171	99.9995	1 in 200,000
43	4.54	173	99.9997	$\frac{1}{1}$ in 333,333
44	4.68	175	99.99986	1 in 714,286
45	4.83	177	99.99993	1 in $1,428,571$
46	5.00	180	99.99997	1 in 3,333,333
47	5.21	183	99.999991	1 in $11, \frac{111}{33}, \frac{111}{333}$
48	5.42	186	99.999997	1 1n $33,333,333$

The Hockefeller Prize

Proceedings and Addresses
 of

The American
Philosophical Association

Jamuary 1983

 yelume 61, :x
FIFTH ANNUAL COMPETITION FOR WORK BY UNAFFILLATED PHILOSOPHERS

The APA Committee on Lectures. Publications and Research invites submissions from members for the prize awarded annually, with funds provided by a grant from the Rockefeller Foundation, for the best unpublished work in philosophy by a nonacademically affiliated philosopher. This will be the fifth annual prize.

This prize was made possible by a five-year grant awarded to the APA in order to encourage writing and research by humanists not employed in an academic setting: similar prizes are awarded, also with Rockefeller funding, by the American Historical Association and the Modern Language Association.

Rules for the 1988 competition are as follows:

1. Manuscripts submitted must be unpublished and written by individuals who hold a PhD in philosophy.
2. Authors of work submitted may not have held an academic position at an institution of higher education within the last three years. Piofessors emeriti are not eligible; persons holding an unpaid affiliate adoointment to a department, or holding only a limited and temporary adjunct appointment are eligible.
3. Manuscripts must be neatly typed, and three copies must be submitted to the subcommittee chair at the address below.
4. Deadline for receipt of submissions for the 1988 competition is June $1,1988$.

Book length manuscripts will not be considered. A representative chapter from a book would be considered. The manuscripts will be reviewed "blind".

Members of the Subcommittee of the Committee on Lectures. Publications and Research to award the 1988 prize are Timothy Brennan, Chair: LaVerne Shelton and Paul Woodruff. Works submitted for consideration and questions about the competition, should be sent to Timothy Brennan, c/o George Washington University. 515 22nd Street, NW, Room 401, Washington, DC 20037.

NON-ACADEMICALLY AFFILIATED PHILOSOPHER ROCKEFELLER PRIZE AWARDED

The 1987 Rockefeller Prize for the Best Unpublished Work in Philosophy by a Non-Academically Affiliated Philosopher has been won by Richard Brockhaus for "Realism and Psychologism in 19th Century Logic." The Committee did not award an honorable mention this year.

chail

Mormen E Bome
Conter for ine Study of Yaluen
Unveratiy of Delawate
Mpwith Oerdwate IEF16
$(302)+51-2344$
September 12． 1988
committid metuten
Jow feinbery
Unerersbly or Arriona
Pridipge foor
unversity of Cuitornie
Las Angeles
Criberl Matman
princeron Unworaty
Norman Katigmann Cornewt unowaty
Marina Nultataum
Bramn Unamonty
Oery Smaptro
Unowertity ot mansen
James Staripa
unwerlity of motre Dame

Or．Ronald Hoeflin
P．O．Box 7433
New York，NY 10116
Dear Dr．Hoeflin：
I am pleased to inform you that your essay，＂Theories of Truth：A Comprehensive Synthesis，＂has won the Fifth Annual Competition for the Best Unpublished Work in Philosophy by a Non－Acadenically Affiliated Philosopher．

The Selection Comititee congratulates you and wishes you continued success in your philosophical work．

Sincerely yours，
\rightarrow とnem
Norman E．Bowle
Chafr．Comititee on lecturas．
？ublication and Research

NEB／ssm

AMERICAN PHILOSOPHICAL ASSOCIATION
 univintity of otlawanc

N度wank Dilawane

[^1]
r007254世 1：0312000920：2197 76830

How Colleges
 Handle S.A.T.

Is il advantageous for a college applicant to take the Scholastic Aptitude Test more than once?
The question was asked of 3,000 admissions officers by the College Board, which adminislers the S.A.T. Here are the replies from 325 public institutions and 694 private colleges:

GEight percent of the public colleges and 6 percent of the private institutions consider only a student's most recent S.A.T. scores.

IThirly-nine percent of the public colleges and 14 percent of the private colleges accept a student's highest combination of verbal and mathematics scores taken on a simgle day.

IThirty-four percent of the public colleges and 50 percent of the private colleges accept the highest math score and the highest verbal score, even from different dates.

GOne percent of the colleges in each group averages all of a student's scores.

Most students take the test once or twice over the course of the junior and senior years in high school.

[^0]:

[^1]:

