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ic, somatic, kinesthetic, news reels, or whatever' - is temporal, 
and subject to stratificative distinctions. These are critical and 
can under no circumstances be shrugged off as irrelevant or unim-
portant. That is why our optimum analytical vantage remains the 
CTMU syntaxification of prediction and control. 

In (2), odds are relativized to the predictor's knowledge. 
This reflects the fact, which I have repeatedly stressed, that 
probabilities are meaningless without formulative relativization. 

In (4), free will is tacitly equated with reduced certainty. 
As certainty must be relativized to the syntaxes of derivation of 
sampling functions, so must free will (this point was originally 
made in The Resolution of Newcomb's Paradox). So free will too is 
meaningless without relativization, and the CTMU - which is the 
first and only theory in which this can be accomplished - again 
dominates any lesser approach. 

Under 'Previously Attempted Solutions*, it is observed that 
'the control (of chooser by predictor) must be broken if chooser 
is to have any hope of equity given a non-altruistic predictor.' 
The breaking of control relationships is closely related to the 
question of demonic competition treated in the last issue. It is 
also subject to a generalized form of uncertainty, r-uncertainty, 
derived as a structural property of r. It reflects the ubiquity of 
undecidability in r, and can be problematic for choosers seeking 
an absolute upper hand over the demons controlling them (or, by 
prediction and algorithmic regression, their outward destinies). 

The proferred solution of Newcomb's problem reflects the 
asymptotic convergence of the expected utility of Cl on 51,000 as 
S./(F.+ 1) —4 Infinity and Prob —4 1 (where S.. F. are the numbers 
of past predictive successes and failures known to the chooser). 
It is not a 'terribly strenuous exercise' because-  it omits many of 
the logical complexities of the problem. It is these of which we 
must not lose sight if we hope to achieve deep understanding. 
Regarding conclusion (I). we have - already mentioned the symmetry 

of the metagame matrix with respect to the chooser-predictor dis-
tinction. Regarding (2), economies are characterized by strategic 
functions in which both competition and cooperation come into play 
simultaneously. The cooperation factor regresses to encompass the 
entire economy, and requires a treatment analogous to the theory 
of n-ary metagames. Regarding (3). the intersyntax translation of 
utility functions is indeed a matter of great complexity. Because 
the situation is relativistic, it calls unequivocally for the CTMU 
resolvency of intersubjective paradox. 

The foregoing remarks are not meant to detract from the merits 
of Mr. Dicks' paper. Despite the inadequacies it shares with other 
methods of its kind, certainty theory does give provisional con-
firmation of some probabilistic hypotheses (that is, of probabili-
ties among the successive instances of which there exist uninter-
rupted dependency relationships analogous to physical causation), 
at least in the majority of decision-theoretic situations. Even 
where undecidable predicates defined on the unpredictable volition 
of demons are consistently active, certainty theory confirms them 
by their recurrent (fl-pseudorecursive) effects; this happens to 
be so for Newcomb's Problem. But were a demon to play insincerely 
for a number of trials, winning and losing 'at random', he could 
still win at will in a manner to which certainty theory is blind. 

I'm sure the other members will agree that George's paper has 
been the occasion of even greater insight than before;  and we may 
therefore express our unreserved gratitude for his input. 

I have just received a letter from Ronald Hoeflin expressing 
his need to address logistical matters like subscription renewals 
and a possible annual meeting. These will be taken up in the next 
issue, which either he or I will be editing. 
(pp. 2, 9-12: copyright 1990 by C.M. Langan. All rights reserved.) 
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Foreword: C.M. Langan  

This issue centers on the paper 2-Player Mono-Predictive 
Games with Contingent Rewards, authored by George Dicks. The paper 
will be followed by my commentary. The remarks on this page are 
mainly in response to a letter which accompanied the paper when it 
was sent to me for publication. 

While it is clearly not the author's intention to dispute the 
previously published material on Newcomb's paradox, he does claim 
that my resolution "is actually a special case of a larger 
solution". While this is in a sense true, it seems to imply that 
his treatment can be seen as a generalization of that given in 
The Resolution of Newcomb's Paradox. This requires that we draw 
some important distinctions about what each paper claims to do, 
and how and why it does it. 

First, Mr. Dicks is offering a comparative treatment of several 
distinct Newcomb-like scenarios. These scenarios cover the view-
point of an arbitrary subject with meager data on the predictor's 
methods and past efficacy; all possibilities must be exhaustively 
considered in the formation of a rational strategy. However, this 
is necessary only when confronting the subformulation of Newcomb's 
paradox which omits critical data on past trials. Most "rational" 
players confronting such a subformulation, like the majority of 
analysts who have addressed the entire formulation, do not really 
consider the possibility of actual prediction and control. But as 
we have seen, Newcomb's paradox has been purposely constructed so 
as to prevent these possibilities from being ignored; they are its 
raison digtre. There is no other sure way to reconcile ND's long 
string of victories with the given distribution of subjects among 
both possible behaviors. 

Problems, and probabilities, change along with the information 
defining them. The Newcomb formulation, which includes information 
absent in the subformulation considered by Mr. Dicks, is designed 
to center attention on the most paradoxical - and thus, the most 
potentially enlightening - aspect of predictive games. This aspect 
is the gateway to a much larger generalization than any which may 
be reached through game theory alone. In fact, the Resolution may 
be considered the r-generalization of the situation in which the 
subject's data access is totally restricted, and the following 
paper as a "special case' of it. 

Mr. Dicks also observes that the assumption of programmatic 
control implies that the demon could maintain his perfect record 
simply by making every subject take both boxes, and leaving the 
black one empty. Thus, he cannot be a true controller, since he 
violates his own subjective utility by unnecessarily spending his 
money on those who take the black box only. But this involves the 
unwarranted assumption that the subjective utility of demons is 
decidable to their subjects. While money may be valuable to human 
beings, it is by no means assured that demons can control their 
subjects as easily as they can produce it, or even that what they 
want - other than the apparent belief of their subjects - can be 
bought with it. 

Nevertheless. Mr. Dicks' paper appears to have been thoroughly 
and carefully written, a fact which our readers may now ascertain 
for themselves. 
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(probabilistic) hypotheses. 
.Let's have a look at the confirmation theoretic paradox known 

as Goodman's Gpue, which is clearly a matter of the computational 
limitations of human beings. Call an object 'gruel' if it is green 
until some future time, at which it will turn blue. Let C be a set 
of objects, and consider the two hypotheses, "V c e C: c a green" 
("for all objects c in class C: Probability(c is green) 1") and 
"V c e C: c gruel". Note that the Prob # 1 clause is merely the 
limiting case of Prob n. Now begin sampling at random from C. 
and say that a long string of green objects is observed. Since 
green is indistinguishable from 'grue' at this point in time, the 
"certainty" that class C consists of grue objects rises along with 
the certainty that C contains only green objects! We appear to be 
confirming the utterly arbitrary and unfounded hypothesis that the 
members of C are all going to turn blue by means of some unknown 
mechanism at some future moment.. .be they frogs. 1 • Ids, 
or hundred dollar bills. 

As we illustrated in Noesis 46 using a farfetched menagerie, 
our total uncertainty as to the existence of the green-to-blue 
mechanism postulated in the definition of "grue' renders us unable 
to infer "grue-ness" from the probabilistic data in question. The 
mechanism is an interstratum "cut" severing the green and blue 
subpredicates of the composite predicate grue. The green component 
is r.-decidable; the blue component is r.-undecidable prior to its 
r. observational 'collapse" via the interdeterministic mecnanism, 
and is no better known to us than the state of a physical quantum 
before we have measured it. Similarly, predicates relevant to 
predictive games may be r,-undecidable and therefore inconfirmable 
by means of (first-order) certainty theory. 

Thus, "certainty theory' is a bit of an oxymoron. As Glidel took 
pains to demonstrate, 'certainty' and "theory' combine to form 
"incompleteness", which stands for uncertainty with respect to 
theoretically undecidable predicates. Since such predicates may 
have everything to do with games like Newcomb's, we are merely 
trading one kind of critical ignorance for another. If, at a given 
time, we cannot possibly acquire additional critical information 
by regressing within r., we must do so in the orthogonal sense... 
through successive r control levels. While the information thereby 
acquired may be disappointingly inspecific, it can be instructive 
concerning the potential Capabilities of "higher entities" like 
Newcomb's Demon. 

Mr. Dicks himself remarks that players 'lacking information 
on a specific predictor-. -are left to speculate on exactly what 
(the hidden influence) might be". Demonic volition and its expres-
sive mechanisms are "hidden influences', and we have already shown 
that all such influences must conform to an unspeculative master 
syntax, that of r. so it is the CTMU, and not 'certainty theory", 
which better encompasses the theory of predictive games. This is 
only natural, since the CTMU is a general theory of that logical 
universe in which 'predictive games' play an integral part. 

The section entitled 'Possible Strategies for a Predictor" 
contains several terms which have figured prominently in recent 
discussions. (1) considers the possibility of a "signal". Signals 
propagate in time, and time entails order. In #48, we described a 
stratification of ordertypes in which our power to differentiate 
(count) can be overwhelmed from above; the dynamical timetype in 
which we formulate distinctions exists within a higher, continuous 
timetype in which it may be arbitrarily extended and re-ordered 
(e.g., by injection of "diagonal elements' like that defined by 
Cantor). The hierarchy of computative timetypes is thus loosely 
analogous to the Cantorian ordertypic stratification. Signals must 
be defined relative to the timetype(s) in which they propagate. By 
the same token, any transmission:: 

tt 

 information - be it "telepath-
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There are a number of ways to reach this conclusion. First, 
observe that certainty theory involves a probabilistic regression 
like that associated with Bayesian inference. But while the latter 
seeks to acquire new (initial) information regarding determinant 
parameters, certainty theory seeks to bootstrap 'new' information 
from a largely invariant sampling procedure. Although successive 
trials do indeed provide new information concerning the universe 
being sampled, certainty theory ignores the inductive process by 
which this information is used to extend and modify statistical 
parameters. For practical purposes, these parameters might as well 
be formally undecidable to the r-subautomata they affect. Unfor-
tunately, these parameters define the strategic mechanisms by 
which Newcomb's Demon succeeds or fails in his ends. 

"Certainty" amounts here to the probability of a probability, 
as derived from the same data and by the same means used to derive 
its argument. A hypothetical probability is confirmed empirically 
and used to define a point on a unit line segment, dividing it in 
the ratio of certainty to uncertainty: the length on one side of 
the point measures the probability that the final (maxi-confirmed) 
probability derived by sampling is greater than the present (part-
ly confirmed) probability, and the length on the other side cor-
responds to the opposite inequality. It matters not whether the 
hypothetical probability ("Prob") is considered initially correct, 
since the rate of confirmation - the accumulation of 'certainty" - 
cannot exceed the rate of modification of an incorrect hypothesis; 
information is information relative to a given transductive syn-
tax. The regression of probabilities of probabilities of...proba-
bilities can either be effected within r, or it cannot; if not, 
we have r-regression through levels of relative undecidability. 

Confirmation theory, which has been treated exhaustively in the 
CTNU, has been the cause of much puzzlement among a wide range of 
logicians, philosophers, and probability theorists. It is thus 
important to realize that "certainty theory" is merely a branch of 
confirmation theory, and assumes deep meaning only within the CTMU 
formalism. In Noesis 47, we demonstrated the necessity of relativ-
izing quantum uncertainty, and its collapsative determination, to 
the cognitive syntaxes of informationally-relativistic automata. 
We must do no less for its complement. certainty. The Crib, which 
has already been used to resolve the most vicious and intractable 
paradoxes known to logic and science, is utterly indispensable for 
all such purposes. So the Resolution, and the associated CTMU, en-
compass any theory to which such paradoxes relate. There can be no 
"larger solution", now or ever. 

Consider the application of certainty theory to the following 
hypothesis: "There is no r,-effective principle which is not r,-
distributive." (Paraphrase: there are no nonlocal physical causal 
mechanisms.) Prior to Heisenberg's mensural diagonalization of 
physical quantum determinacy and the EPR/Bell nonlocality experi-
ments, the theory could have been used to demonstrate the virtual 
"certainty of this hypothesis, which admits of neither physical 
nor logical validation. In fact, we might blame "certainty theory" 
for the delay in the discovery and acceptance of the CTMU, as well 
as many other useful original theories. For example, the Church 
once considered geocentrism to be well-confirmed, and Einstein's 
critics had what they considered endless data attesting to the 
certainty that the velocities of physical frames sum linearly. 
What ends up being most "certain" is that axiomatically and meth-
odologically-relative determinations of certainty have too often 
been summarily pronounced absolute by those who make them, despite 
the embarrassments of those who preceded them in error. Just one 
undecidable counterexample, relative to the derivation of a sampl-
ing function, is enough to destroy all the 'certainty" accumulated 
by means of such a function with respect to universally-quantified 
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2-Player Mono-Predictive Games with Contingent Rewards 

George W. Dicks, Jr. 
199 Sturm St 

New Haven, IN 46774 
(219) 749 - 8511 

This paper will attempt to develop a generalized theory to handle 
2-player games in which one player, the Predictor, will attempt 
to predict the behavior of the other, the Chooser. A formalism 
will be developed and applied to the problem while • method of 
estimating probabilities given experimental data of uncertain 
distribution will be demonstrated. Strategies which Predictors 
eight use to alter probability in their favor will be outlined 
and previous attempts will be discussed. Finally, the formalism 
will be tried on a rather famous special case, Newcombs' Problem. 

Here is the nroblem in a somewhat more formal form:  
Let Players = (Predictor, Chooser) 
Let PotentialChoices = (CI, C2) 
Let PotentialRewards = (R1, R2,I, R2,2) 

where: 
The value of each is known to all players 
RI is some relatively minor  
R2,1 is Significantly loss valuable than RI 
R2,2 is significantly more valuable than RI 

Predictor sets PredictedChoice 
such that 

PredictedChoice is a subset of PotentialChoices 
iff PredictedChoice = (C2), 

Let OfieredRewards = (RI, R2,2) 
otherwise 

Let OfferedRewards = (RI, R2,1) 
where: 

R2,X will hereafter also be known simply as R2 
Chooser sets ActualChoice 
such that 

ActualChoice is a Subset of PotentialChoices 
Let ActualReward a CR/ t CX is an eleeent of ActualChoice) 
,at value of ActualChoice will maximize ActualReward? 

Minimalist Choices 
In these cases Chooser selects either nothing or the known 
reward. These choices are totally independent of the actions of 
Predictor. 

if R2,I < 0 and R2,2 ( 0 
14 RI < 0 

Let ActualChoice = () 
otherwise 

Let ActualChoice = (C11 

if RI < 0 and R2,1 > 0 and R2,2 > 0 
Let ActualChoice a (C2) 
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Choices involvino Predictor  

Now that we have dispensed with the simple cases let's introduce 
the Predictor into our calculations and see what happens. 

We begin by realizing that Predictor may be viewed as a 
randomizer with • certain distribution. Therefore, we will need a 
variable to represent this. 

Let Prat = Probability that Pred/ctedChoice = ActualChoice 

Now, we can examine the two simplest cases involving Predictor. 
These are the cases where Prob is 1 or Prat, is 0 indicating that 
Predictor is either always correct or always incorrect in turn. 
These may be determined simply by weighing the values of the 
respective rewards. 

if Prob = 1 
if ActualChoice = (C2), ActualReward is (R2,2) 
if ActualChoice = (CI, C2), ActualReward is (RI, R2,I) 
therefore 

if R2,2 > RI + R2,1 
Let ActualChoice = CC?) 

otherwise 
Let ActualChoice = (CI, C2) 

if Prob = 0 
if ActualChoice = (C2), ActualReward is CR2,I) 
if ActualChoice = (C1,C2), ActualReward is (RI, R2,21 
therefore 

if R2,1 RI + R2,2 
Let ActualChoice = (C21 

otherwise 
Let ActualChoice = tel, C2) 

Finally, we come to the most complicated case. Here we will be 
calculating with • Predictor who's not always right and not 
always wrong but rather falls somewhere in between. As you can 
see this case is calculated by comparing the expected utility 
from each choice and selecting the most profitable. 

if Prob < I and Prot > 0 
if ActualChoice = (C2), 

ActualReward is ((Prob(R2,2)+(l-Prob)(R2,1))) 
if ActualChoice = (CI,C2), 

ActualReward is (RI, (Prob(R2,1)+(1-Prob)(R2,2))) 
therefore 

if (Prob(R2,2)+(l-Prob)(R2,1)) > 
Rlf(Prob(R2,1)+(1-Prab)(R2,2)), 

Let ActualChoice = (C21 
otherwise 

Let ActualChoice = (CI,C2) 
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The first thing we note about the preceding paper is that it 
invokes certain mysterious and widely contended issues in logic 
and probability, known collectively under the heading confirmation 
theory. However, before we embark on a detailed treatment of these 
issues, a few preliminary remarks may be useful. These will be 
made in order of reference. 

While a distinction has been made between the predictor and the 
chooser, this should not divert us from the realization that each 
player is attempting to predict the thought and behavior of the 
other. Without a prior determination on the level of computation 
employed by each, the distinction is merely that between (time-
relativized) first and second play. That only the second player 
can win money is irrelevant, since the subjective utility of each 
is fully at stake.. .and money is only a concrete generalization of 
utility after all. The situation is reflected in the fact that the 
metagame payoff matrix given in Noesis 45 is symmetrical with res-
pect to this distinction. The theory of metagames thus serves as a 
basis for the extension suggested in (I), (2), and (3) on the last 
page. It was designed for games in which utility is enhanced by 
cooperation, and its first celebrated application was reportedly 
to the prisoner's dilemma itself. A version of it was applied in 
the last issue to answer a question about demonic competition. 

Next, the chooser has four, and not three, potential rewards. 
Where the 'relatively minor reward' RI is $1000, R2,1 must be $0, 
and R2,2 must be 51,000,000. Where the predictor is considered 
potentially fallible, the chooser might also win (RI • R2,2), or 
81,001,000. But this is so minor a point that its mention almost 
bears an apology. 

It is stipulated that R2,1 is significantly less valuable than 
RI. Under the heading 'Minimalist Choices", we find the condition 
'if RI < 0 and R2.1 ) 0 and R2.2 0...' which is superficially in 
violation of the primary condition R2.1 < RI. Given that these 
cases deal with negative (subzero) rehards amounting to losses or 
penalties, consistency requires that we restate the primary condi-
tion in terms of absolute values: 1112,11 < IRII < IR2,21. We might 
also interpret this passage in terms of information; the inequal-
ities make as much sense if we equate "<" to "x" and let the R( ) 
stand for the amounts of information available to the chooser con-
cerning the corresponding rewards. But we are merely speculating, 
and only the author can be sure of his meaning. 

Next, the move of the predictor "randomizes" the outcome of 
the game, resulting in an empirically derivable distribution of 
outcomes. But the statistical parameters of this distribution need 
not be so-derivable, and the "Prob" function is thus oblivious to 
them. That is. the chooser has only limited empirical access to 
the distribution, of which "Prot)" is merely' an average meant to 
conceal the chooser's ignorance of what distinguishes one trial 
from another. The distinction between "Prob" and the distribution 
from which it derives disappears in the limit Prob m I. which is a 
condition of Newcomb's problem. Below this limit, we have "the 
most complicated case' 0 < Prob < I. 

The above paper distinguishes itself from The Resolution of 
Newcomb's Paradox chiefly in giving a method, 'certainty theory", 
by which the subject may cope with his ignorance concerning the 
predictor. This ignorance amounts to relativized uncertainty, a 
computational predicate which the theory promises to counteract by 
virtue of its very name. It should therefore be noted at the out- 
set that no such method can exist in any absolute sense. While 
certainty theory can apply only within the computative limitations 
of particular r-subautomata, the larger context generated by the 
paradox need reflect no such restriction. Concisely, 'certainty' 
is a term in glaring need of relativization, and any attempt to 
rely on a lesser definition of it must lead eventually to failure. 
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rnnrlusionst  

We have examined • rather simple sat of 2-player Same-Theory 
problems Le mh1ch one player attempts to predict the behavior of 
the other. Ne have developed a system by which Chooser may 
maximize his expected reward from such • game. Furthermore, we 
have demonstrated how to determine the odds of such • game given 
historical data of Predictor's ability and speculated an methods 
Predictor may employ to set these odds in his favor. Finally, we 
have examined some previous attempts at this problem. 

At this point we will demonstrate the formalism by attacking a 
rather famous special case known as Newcomb's Problem. 

Given. 
Let PotentialChoicas = (Boxl, Box2) 
Let PotentialRewards = (1000, 0, 1,000,000) 
Let PredictedChoice be a subset of PotentialChoices 
If PredictedChoice = (Box2) 

Off eredRewards = C1000, 1,000,0003 
otherwise 

OfferedRewards = (1000, 0) 
Let ActualChoice be a subset of PotentialChoices 
if ActualChoice = C), ActualReward = 0 
if ActualChoice = (Boxl), ActualReward = 1000 
Assuming 1000 correct trials, we are .999 certain Prob > .9931 
if ActualChoice = CBox2) 

ActualReward = .9931(1,000,000) + .0069(0) = 993,100 
if ActualChoice = (Box 1, Box?) 

ActualReward = 1000 + .0069(1,001,000) = 70,069 
therefore Let ActualChoice = (80x2) 

While this has not been a terribly strenuous exercise, there is 
an incredible amount of work remaining to be done: 

1. The theory should be expanded to allow Choosers to also be 
Predictors. By developing such a Duo-Predictive theory, problems 
such as The Prisoner's Dilemma would become tractable. 

2. The theory should be enlarged to encompass multiple Predictors 
and multiple Choosers. This would enable simple market economics 
to be derivable from the theory. 

3. A much more complicated reward system needs to be incorporated 
which will enable considerably mare difficult problems in ethics, 
economics, political science to be solvable. 

Probability That PredictedChoice = ArtualChnirg 

Nam we will attempt to develop a method for calculating Prob. 
This is akin to correlating ActualChoice and PredictedChoice. 

Therm are two possibilities: 

1. ActualChoice has no correlation to PredictedChoice 
became, 

there are no hidden factors at work 

2. ActualChoice correlates with PredictedCholce 
possibly because 

ActualChoice made before PredictedChoice 
or Predictor has Precognition of ActualChoice 
Or Predictor makes PredictedChoice and ActualChoice 
Or Predictor divulges PredictedChoice 
Or some hidden variable is involved 

The only way to establish the existence of such a correlation is 
by sampling the performance of a given predictor and calculating 
a likely probability of similar performance in the future. For 
this purpose, Certainty Theory should suffice quite nicely. 

In Certainty Theory the probability, number of trials, and 
certainty are related: (1-Certainty) >= Prob N. 

Example: given a coin believed to be biased. It has shown 7 tails 
in 7 tosses. How certain can we be that the probability of tails 
is at least .55? (1-Certainty) >= .55 - 7. Certainty >= .98478 

Example: given a coin believed to be biased. If heads appear on 
every throw, how many times must it be thrown to be 90% sure the 
probability of a head is at least .99? .1 >= .99 N. N >= 230. 

Now, how does this relate to calculating Prot for Predictor? 
In order to demonstrate, let's run some examples. 

Given 10 correct predictions in 10 attempts. ,at minimum 
probability is .999 certain? .001 >= Prob ." to. Prot = .5012 

Given 1000 correct predictions in 1000 attempts. What minimum 
probability is .999 certain? .001 >=. Prob 1000. Prob = .9931 

In this fashion a relatively good estimate of Prob can be easily 
obtained given historical data. It is also fairly obvious that if 
Predictor has a long record of good performance that there is 
probably some hidden influence at work. Unfortunately, lacking 
information on a specific Predictor, we are left to speculate on 
exactly what it might be. 
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Possible Strateoies for A Predictor  

Let's now quickly examine some possible methods which might be 
employed by • sufficiently resourceful and capable Predictor to 
alter Prob. In each case, if the method fails, Prot will migrate 
toward .5. While this list is hardly exhaustive, it does contain 
a pretty good variety of plausible strategies. It should also be 
noted that a truly resourceful and capable Predictor would employ 
more than one strategy to guard against the weaknesses in each. 

1. ActualChoice made before PredictedChoice 

a. Chooser commits to his choice. 
b. By some signal, be it telepathic, somatic, kinesthetic, 

news reels, or whatever, Chooser communicates ActualChoice. 
C. PredictedChoice is set to recieved ActualChoice 
d. By some method, trap door, time stop, teleportation, or 

even Star Trek transporter, ActualReward is set to the 
value indicated by ActualChoice. 

This method will work in all cases where Predictor can recieve 
some signal from Chooser and where circumstances don't prevent 
setting of ActualReward accordingly. 

2. Predictor has precognition of ActualChoice 

While this method is essentially the same as *1, PredictedChoice 
is made before ActualChoice. The odds are improved, however, 
because Predictor knows something of ActualChoice. This could be 
done by time travel, precognition, or simply by selecting 
Choosers with known characteristics whose behavior may be easily 
predicted. 

Previously Atteanted RnIutinn= 

Here is a sampling of some attempted solutions which have been 
proposed by other authors at other times. A short consent follows 
each. 

1. Predictor is impossible. Assume chance. Set ActualChoice to 
maximize ActualAmward as though chance is operating. 

The vast variety of ways by which • sufficiently resourceful and 
capable Predictor could guarantee • very successful record casts 
this possibility deeply into doubt. In fact, many of these same 
methods are employed every day, even within our limited range of 
experience. 

2. PredictedChoice is already set. ActualChoice cannot affect 
PredictedChoice. Set ActualChoice to maximize ActualReward as 
though chance is operating. 

This reasoning is sound except when faced with a case where 
PredictedChoice transcends time or where therm is some control 
involved. In other words, it will clearly fail in cases where 
ActualChoice affects PredictedChoice or whore ActualChoice is 
largely at the discretion of Predictor. 

3. Predictor controls Chooser. ActualChoice = PredictedChoice. 
Therefore ActualReward will be optimized for both players. 

This is potentially the least advantageous strategy from 
Chooser's viewpoint. For this reason, the control must be broken 
if Chooser is to have any hope of equity given a non-altruistic 
Predictor. 

The success of this method is related strongly determined by the 
quality of the information gained. For this reason, acting 

3. Predictor makes ActualChoice and PredictedChoice 

4. Assume Chooser knows PredictedChoice. Set 
value most advantageous to Chooser. Follow same 
though Chooser doesn't know PredictedChoice. 

ActualChoice to 
reasoning even 

a. Predictor makes PredictedChoice 
b. ActualReward is set to value indicated by PredictedChoice 
c. By some way, telepathy, coercion, possession, suggestion, 

programming, or simply being the Chooser, Predictor 
convinces Chooser to Let ActualChoice = PredictedChoice 

This method will work in all cases where Predictor can 
force Chooser to set ActualChoice to Predictor's specification. 

4. Predictor divulge* PredictedChoice 
This is exactly like method 3 with one major exception. 
Chooser maintains more free will than in 3. This makes this 
method inherently less certain than method 3. 

This is akin to asking why a player in a 5 card stud poker game 
behaves differently than in a similar game with all cards 
visible. In each case, missing information forces a different 
line of reasoning than would be followed otherwise. 

5. Chooser always acts in a certain manner when confronted with 
this type of problem. Predictor will use this information to set 
PredictedChoice. 

This is a perfectly reasonable approach if Predictor uses this 
type of information in setting PredictedChoice. As we have seen 
there are other, more reliable, methods which Predictor could 
RPPIY. 
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Possible Strateoies for A Predictor  

Let's now quickly examine some possible methods which might be 
employed by • sufficiently resourceful and capable Predictor to 
alter Prob. In each case, if the method fails, Prot will migrate 
toward .5. While this list is hardly exhaustive, it does contain 
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noted that a truly resourceful and capable Predictor would employ 
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d. By some method, trap door, time stop, teleportation, or 

even Star Trek transporter, ActualReward is set to the 
value indicated by ActualChoice. 

This method will work in all cases where Predictor can recieve 
some signal from Chooser and where circumstances don't prevent 
setting of ActualReward accordingly. 

2. Predictor has precognition of ActualChoice 

While this method is essentially the same as *1, PredictedChoice 
is made before ActualChoice. The odds are improved, however, 
because Predictor knows something of ActualChoice. This could be 
done by time travel, precognition, or simply by selecting 
Choosers with known characteristics whose behavior may be easily 
predicted. 

Previously Atteanted RnIutinn= 

Here is a sampling of some attempted solutions which have been 
proposed by other authors at other times. A short consent follows 
each. 

1. Predictor is impossible. Assume chance. Set ActualChoice to 
maximize ActualAmward as though chance is operating. 

The vast variety of ways by which • sufficiently resourceful and 
capable Predictor could guarantee • very successful record casts 
this possibility deeply into doubt. In fact, many of these same 
methods are employed every day, even within our limited range of 
experience. 

2. PredictedChoice is already set. ActualChoice cannot affect 
PredictedChoice. Set ActualChoice to maximize ActualReward as 
though chance is operating. 

This reasoning is sound except when faced with a case where 
PredictedChoice transcends time or where therm is some control 
involved. In other words, it will clearly fail in cases where 
ActualChoice affects PredictedChoice or whore ActualChoice is 
largely at the discretion of Predictor. 

3. Predictor controls Chooser. ActualChoice = PredictedChoice. 
Therefore ActualReward will be optimized for both players. 

This is potentially the least advantageous strategy from 
Chooser's viewpoint. For this reason, the control must be broken 
if Chooser is to have any hope of equity given a non-altruistic 
Predictor. 

The success of this method is related strongly determined by the 
quality of the information gained. For this reason, acting 

3. Predictor makes ActualChoice and PredictedChoice 

4. Assume Chooser knows PredictedChoice. Set 
value most advantageous to Chooser. Follow same 
though Chooser doesn't know PredictedChoice. 

ActualChoice to 
reasoning even 

a. Predictor makes PredictedChoice 
b. ActualReward is set to value indicated by PredictedChoice 
c. By some way, telepathy, coercion, possession, suggestion, 

programming, or simply being the Chooser, Predictor 
convinces Chooser to Let ActualChoice = PredictedChoice 

This method will work in all cases where Predictor can 
force Chooser to set ActualChoice to Predictor's specification. 

4. Predictor divulge* PredictedChoice 
This is exactly like method 3 with one major exception. 
Chooser maintains more free will than in 3. This makes this 
method inherently less certain than method 3. 

This is akin to asking why a player in a 5 card stud poker game 
behaves differently than in a similar game with all cards 
visible. In each case, missing information forces a different 
line of reasoning than would be followed otherwise. 

5. Chooser always acts in a certain manner when confronted with 
this type of problem. Predictor will use this information to set 
PredictedChoice. 

This is a perfectly reasonable approach if Predictor uses this 
type of information in setting PredictedChoice. As we have seen 
there are other, more reliable, methods which Predictor could 
RPPIY. 
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rnnrlusionst  

We have examined • rather simple sat of 2-player Same-Theory 
problems Le mh1ch one player attempts to predict the behavior of 
the other. Ne have developed a system by which Chooser may 
maximize his expected reward from such • game. Furthermore, we 
have demonstrated how to determine the odds of such • game given 
historical data of Predictor's ability and speculated an methods 
Predictor may employ to set these odds in his favor. Finally, we 
have examined some previous attempts at this problem. 

At this point we will demonstrate the formalism by attacking a 
rather famous special case known as Newcomb's Problem. 

Given. 
Let PotentialChoicas = (Boxl, Box2) 
Let PotentialRewards = (1000, 0, 1,000,000) 
Let PredictedChoice be a subset of PotentialChoices 
If PredictedChoice = (Box2) 

Off eredRewards = C1000, 1,000,0003 
otherwise 

OfferedRewards = (1000, 0) 
Let ActualChoice be a subset of PotentialChoices 
if ActualChoice = C), ActualReward = 0 
if ActualChoice = (Boxl), ActualReward = 1000 
Assuming 1000 correct trials, we are .999 certain Prob > .9931 
if ActualChoice = CBox2) 

ActualReward = .9931(1,000,000) + .0069(0) = 993,100 
if ActualChoice = (Box 1, Box?) 

ActualReward = 1000 + .0069(1,001,000) = 70,069 
therefore Let ActualChoice = (80x2) 

While this has not been a terribly strenuous exercise, there is 
an incredible amount of work remaining to be done: 

1. The theory should be expanded to allow Choosers to also be 
Predictors. By developing such a Duo-Predictive theory, problems 
such as The Prisoner's Dilemma would become tractable. 

2. The theory should be enlarged to encompass multiple Predictors 
and multiple Choosers. This would enable simple market economics 
to be derivable from the theory. 

3. A much more complicated reward system needs to be incorporated 
which will enable considerably mare difficult problems in ethics, 
economics, political science to be solvable. 

Probability That PredictedChoice = ArtualChnirg 

Nam we will attempt to develop a method for calculating Prob. 
This is akin to correlating ActualChoice and PredictedChoice. 

Therm are two possibilities: 

1. ActualChoice has no correlation to PredictedChoice 
became, 

there are no hidden factors at work 

2. ActualChoice correlates with PredictedCholce 
possibly because 

ActualChoice made before PredictedChoice 
or Predictor has Precognition of ActualChoice 
Or Predictor makes PredictedChoice and ActualChoice 
Or Predictor divulges PredictedChoice 
Or some hidden variable is involved 

The only way to establish the existence of such a correlation is 
by sampling the performance of a given predictor and calculating 
a likely probability of similar performance in the future. For 
this purpose, Certainty Theory should suffice quite nicely. 

In Certainty Theory the probability, number of trials, and 
certainty are related: (1-Certainty) >= Prob N. 

Example: given a coin believed to be biased. It has shown 7 tails 
in 7 tosses. How certain can we be that the probability of tails 
is at least .55? (1-Certainty) >= .55 - 7. Certainty >= .98478 

Example: given a coin believed to be biased. If heads appear on 
every throw, how many times must it be thrown to be 90% sure the 
probability of a head is at least .99? .1 >= .99 N. N >= 230. 

Now, how does this relate to calculating Prot for Predictor? 
In order to demonstrate, let's run some examples. 

Given 10 correct predictions in 10 attempts. ,at minimum 
probability is .999 certain? .001 >= Prob ." to. Prot = .5012 

Given 1000 correct predictions in 1000 attempts. What minimum 
probability is .999 certain? .001 >=. Prob 1000. Prob = .9931 

In this fashion a relatively good estimate of Prob can be easily 
obtained given historical data. It is also fairly obvious that if 
Predictor has a long record of good performance that there is 
probably some hidden influence at work. Unfortunately, lacking 
information on a specific Predictor, we are left to speculate on 
exactly what it might be. 
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Choices involvino Predictor  

Now that we have dispensed with the simple cases let's introduce 
the Predictor into our calculations and see what happens. 

We begin by realizing that Predictor may be viewed as a 
randomizer with • certain distribution. Therefore, we will need a 
variable to represent this. 

Let Prat = Probability that Pred/ctedChoice = ActualChoice 

Now, we can examine the two simplest cases involving Predictor. 
These are the cases where Prob is 1 or Prat, is 0 indicating that 
Predictor is either always correct or always incorrect in turn. 
These may be determined simply by weighing the values of the 
respective rewards. 

if Prob = 1 
if ActualChoice = (C2), ActualReward is (R2,2) 
if ActualChoice = (CI, C2), ActualReward is (RI, R2,I) 
therefore 

if R2,2 > RI + R2,1 
Let ActualChoice = CC?) 

otherwise 
Let ActualChoice = (CI, C2) 

if Prob = 0 
if ActualChoice = (C2), ActualReward is CR2,I) 
if ActualChoice = (C1,C2), ActualReward is (RI, R2,21 
therefore 

if R2,1 RI + R2,2 
Let ActualChoice = (C21 

otherwise 
Let ActualChoice = tel, C2) 

Finally, we come to the most complicated case. Here we will be 
calculating with • Predictor who's not always right and not 
always wrong but rather falls somewhere in between. As you can 
see this case is calculated by comparing the expected utility 
from each choice and selecting the most profitable. 

if Prob < I and Prot > 0 
if ActualChoice = (C2), 

ActualReward is ((Prob(R2,2)+(l-Prob)(R2,1))) 
if ActualChoice = (CI,C2), 

ActualReward is (RI, (Prob(R2,1)+(1-Prob)(R2,2))) 
therefore 

if (Prob(R2,2)+(l-Prob)(R2,1)) > 
Rlf(Prob(R2,1)+(1-Prab)(R2,2)), 

Let ActualChoice = (C21 
otherwise 

Let ActualChoice = (CI,C2) 
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The first thing we note about the preceding paper is that it 
invokes certain mysterious and widely contended issues in logic 
and probability, known collectively under the heading confirmation 
theory. However, before we embark on a detailed treatment of these 
issues, a few preliminary remarks may be useful. These will be 
made in order of reference. 

While a distinction has been made between the predictor and the 
chooser, this should not divert us from the realization that each 
player is attempting to predict the thought and behavior of the 
other. Without a prior determination on the level of computation 
employed by each, the distinction is merely that between (time-
relativized) first and second play. That only the second player 
can win money is irrelevant, since the subjective utility of each 
is fully at stake.. .and money is only a concrete generalization of 
utility after all. The situation is reflected in the fact that the 
metagame payoff matrix given in Noesis 45 is symmetrical with res-
pect to this distinction. The theory of metagames thus serves as a 
basis for the extension suggested in (I), (2), and (3) on the last 
page. It was designed for games in which utility is enhanced by 
cooperation, and its first celebrated application was reportedly 
to the prisoner's dilemma itself. A version of it was applied in 
the last issue to answer a question about demonic competition. 

Next, the chooser has four, and not three, potential rewards. 
Where the 'relatively minor reward' RI is $1000, R2,1 must be $0, 
and R2,2 must be 51,000,000. Where the predictor is considered 
potentially fallible, the chooser might also win (RI • R2,2), or 
81,001,000. But this is so minor a point that its mention almost 
bears an apology. 

It is stipulated that R2,1 is significantly less valuable than 
RI. Under the heading 'Minimalist Choices", we find the condition 
'if RI < 0 and R2.1 ) 0 and R2.2 0...' which is superficially in 
violation of the primary condition R2.1 < RI. Given that these 
cases deal with negative (subzero) rehards amounting to losses or 
penalties, consistency requires that we restate the primary condi-
tion in terms of absolute values: 1112,11 < IRII < IR2,21. We might 
also interpret this passage in terms of information; the inequal-
ities make as much sense if we equate "<" to "x" and let the R( ) 
stand for the amounts of information available to the chooser con-
cerning the corresponding rewards. But we are merely speculating, 
and only the author can be sure of his meaning. 

Next, the move of the predictor "randomizes" the outcome of 
the game, resulting in an empirically derivable distribution of 
outcomes. But the statistical parameters of this distribution need 
not be so-derivable, and the "Prob" function is thus oblivious to 
them. That is. the chooser has only limited empirical access to 
the distribution, of which "Prot)" is merely' an average meant to 
conceal the chooser's ignorance of what distinguishes one trial 
from another. The distinction between "Prob" and the distribution 
from which it derives disappears in the limit Prob m I. which is a 
condition of Newcomb's problem. Below this limit, we have "the 
most complicated case' 0 < Prob < I. 

The above paper distinguishes itself from The Resolution of 
Newcomb's Paradox chiefly in giving a method, 'certainty theory", 
by which the subject may cope with his ignorance concerning the 
predictor. This ignorance amounts to relativized uncertainty, a 
computational predicate which the theory promises to counteract by 
virtue of its very name. It should therefore be noted at the out- 
set that no such method can exist in any absolute sense. While 
certainty theory can apply only within the computative limitations 
of particular r-subautomata, the larger context generated by the 
paradox need reflect no such restriction. Concisely, 'certainty' 
is a term in glaring need of relativization, and any attempt to 
rely on a lesser definition of it must lead eventually to failure. 
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There are a number of ways to reach this conclusion. First, 
observe that certainty theory involves a probabilistic regression 
like that associated with Bayesian inference. But while the latter 
seeks to acquire new (initial) information regarding determinant 
parameters, certainty theory seeks to bootstrap 'new' information 
from a largely invariant sampling procedure. Although successive 
trials do indeed provide new information concerning the universe 
being sampled, certainty theory ignores the inductive process by 
which this information is used to extend and modify statistical 
parameters. For practical purposes, these parameters might as well 
be formally undecidable to the r-subautomata they affect. Unfor-
tunately, these parameters define the strategic mechanisms by 
which Newcomb's Demon succeeds or fails in his ends. 

"Certainty" amounts here to the probability of a probability, 
as derived from the same data and by the same means used to derive 
its argument. A hypothetical probability is confirmed empirically 
and used to define a point on a unit line segment, dividing it in 
the ratio of certainty to uncertainty: the length on one side of 
the point measures the probability that the final (maxi-confirmed) 
probability derived by sampling is greater than the present (part-
ly confirmed) probability, and the length on the other side cor-
responds to the opposite inequality. It matters not whether the 
hypothetical probability ("Prob") is considered initially correct, 
since the rate of confirmation - the accumulation of 'certainty" - 
cannot exceed the rate of modification of an incorrect hypothesis; 
information is information relative to a given transductive syn-
tax. The regression of probabilities of probabilities of...proba-
bilities can either be effected within r, or it cannot; if not, 
we have r-regression through levels of relative undecidability. 

Confirmation theory, which has been treated exhaustively in the 
CTNU, has been the cause of much puzzlement among a wide range of 
logicians, philosophers, and probability theorists. It is thus 
important to realize that "certainty theory" is merely a branch of 
confirmation theory, and assumes deep meaning only within the CTMU 
formalism. In Noesis 47, we demonstrated the necessity of relativ-
izing quantum uncertainty, and its collapsative determination, to 
the cognitive syntaxes of informationally-relativistic automata. 
We must do no less for its complement. certainty. The Crib, which 
has already been used to resolve the most vicious and intractable 
paradoxes known to logic and science, is utterly indispensable for 
all such purposes. So the Resolution, and the associated CTMU, en-
compass any theory to which such paradoxes relate. There can be no 
"larger solution", now or ever. 

Consider the application of certainty theory to the following 
hypothesis: "There is no r,-effective principle which is not r,-
distributive." (Paraphrase: there are no nonlocal physical causal 
mechanisms.) Prior to Heisenberg's mensural diagonalization of 
physical quantum determinacy and the EPR/Bell nonlocality experi-
ments, the theory could have been used to demonstrate the virtual 
"certainty of this hypothesis, which admits of neither physical 
nor logical validation. In fact, we might blame "certainty theory" 
for the delay in the discovery and acceptance of the CTMU, as well 
as many other useful original theories. For example, the Church 
once considered geocentrism to be well-confirmed, and Einstein's 
critics had what they considered endless data attesting to the 
certainty that the velocities of physical frames sum linearly. 
What ends up being most "certain" is that axiomatically and meth-
odologically-relative determinations of certainty have too often 
been summarily pronounced absolute by those who make them, despite 
the embarrassments of those who preceded them in error. Just one 
undecidable counterexample, relative to the derivation of a sampl-
ing function, is enough to destroy all the 'certainty" accumulated 
by means of such a function with respect to universally-quantified 
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2-Player Mono-Predictive Games with Contingent Rewards 

George W. Dicks, Jr. 
199 Sturm St 

New Haven, IN 46774 
(219) 749 - 8511 

This paper will attempt to develop a generalized theory to handle 
2-player games in which one player, the Predictor, will attempt 
to predict the behavior of the other, the Chooser. A formalism 
will be developed and applied to the problem while • method of 
estimating probabilities given experimental data of uncertain 
distribution will be demonstrated. Strategies which Predictors 
eight use to alter probability in their favor will be outlined 
and previous attempts will be discussed. Finally, the formalism 
will be tried on a rather famous special case, Newcombs' Problem. 

Here is the nroblem in a somewhat more formal form:  
Let Players = (Predictor, Chooser) 
Let PotentialChoices = (CI, C2) 
Let PotentialRewards = (R1, R2,I, R2,2) 

where: 
The value of each is known to all players 
RI is some relatively minor  
R2,1 is Significantly loss valuable than RI 
R2,2 is significantly more valuable than RI 

Predictor sets PredictedChoice 
such that 

PredictedChoice is a subset of PotentialChoices 
iff PredictedChoice = (C2), 

Let OfieredRewards = (RI, R2,2) 
otherwise 

Let OfferedRewards = (RI, R2,1) 
where: 

R2,X will hereafter also be known simply as R2 
Chooser sets ActualChoice 
such that 

ActualChoice is a Subset of PotentialChoices 
Let ActualReward a CR/ t CX is an eleeent of ActualChoice) 
,at value of ActualChoice will maximize ActualReward? 

Minimalist Choices 
In these cases Chooser selects either nothing or the known 
reward. These choices are totally independent of the actions of 
Predictor. 

if R2,I < 0 and R2,2 ( 0 
14 RI < 0 

Let ActualChoice = () 
otherwise 

Let ActualChoice = (C11 

if RI < 0 and R2,1 > 0 and R2,2 > 0 
Let ActualChoice a (C2) 
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Foreword: C.M. Langan  

This issue centers on the paper 2-Player Mono-Predictive 
Games with Contingent Rewards, authored by George Dicks. The paper 
will be followed by my commentary. The remarks on this page are 
mainly in response to a letter which accompanied the paper when it 
was sent to me for publication. 

While it is clearly not the author's intention to dispute the 
previously published material on Newcomb's paradox, he does claim 
that my resolution "is actually a special case of a larger 
solution". While this is in a sense true, it seems to imply that 
his treatment can be seen as a generalization of that given in 
The Resolution of Newcomb's Paradox. This requires that we draw 
some important distinctions about what each paper claims to do, 
and how and why it does it. 

First, Mr. Dicks is offering a comparative treatment of several 
distinct Newcomb-like scenarios. These scenarios cover the view-
point of an arbitrary subject with meager data on the predictor's 
methods and past efficacy; all possibilities must be exhaustively 
considered in the formation of a rational strategy. However, this 
is necessary only when confronting the subformulation of Newcomb's 
paradox which omits critical data on past trials. Most "rational" 
players confronting such a subformulation, like the majority of 
analysts who have addressed the entire formulation, do not really 
consider the possibility of actual prediction and control. But as 
we have seen, Newcomb's paradox has been purposely constructed so 
as to prevent these possibilities from being ignored; they are its 
raison digtre. There is no other sure way to reconcile ND's long 
string of victories with the given distribution of subjects among 
both possible behaviors. 

Problems, and probabilities, change along with the information 
defining them. The Newcomb formulation, which includes information 
absent in the subformulation considered by Mr. Dicks, is designed 
to center attention on the most paradoxical - and thus, the most 
potentially enlightening - aspect of predictive games. This aspect 
is the gateway to a much larger generalization than any which may 
be reached through game theory alone. In fact, the Resolution may 
be considered the r-generalization of the situation in which the 
subject's data access is totally restricted, and the following 
paper as a "special case' of it. 

Mr. Dicks also observes that the assumption of programmatic 
control implies that the demon could maintain his perfect record 
simply by making every subject take both boxes, and leaving the 
black one empty. Thus, he cannot be a true controller, since he 
violates his own subjective utility by unnecessarily spending his 
money on those who take the black box only. But this involves the 
unwarranted assumption that the subjective utility of demons is 
decidable to their subjects. While money may be valuable to human 
beings, it is by no means assured that demons can control their 
subjects as easily as they can produce it, or even that what they 
want - other than the apparent belief of their subjects - can be 
bought with it. 

Nevertheless. Mr. Dicks' paper appears to have been thoroughly 
and carefully written, a fact which our readers may now ascertain 
for themselves. 
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(probabilistic) hypotheses. 
.Let's have a look at the confirmation theoretic paradox known 

as Goodman's Gpue, which is clearly a matter of the computational 
limitations of human beings. Call an object 'gruel' if it is green 
until some future time, at which it will turn blue. Let C be a set 
of objects, and consider the two hypotheses, "V c e C: c a green" 
("for all objects c in class C: Probability(c is green) 1") and 
"V c e C: c gruel". Note that the Prob # 1 clause is merely the 
limiting case of Prob n. Now begin sampling at random from C. 
and say that a long string of green objects is observed. Since 
green is indistinguishable from 'grue' at this point in time, the 
"certainty" that class C consists of grue objects rises along with 
the certainty that C contains only green objects! We appear to be 
confirming the utterly arbitrary and unfounded hypothesis that the 
members of C are all going to turn blue by means of some unknown 
mechanism at some future moment.. .be they frogs. 1 • Ids, 
or hundred dollar bills. 

As we illustrated in Noesis 46 using a farfetched menagerie, 
our total uncertainty as to the existence of the green-to-blue 
mechanism postulated in the definition of "grue' renders us unable 
to infer "grue-ness" from the probabilistic data in question. The 
mechanism is an interstratum "cut" severing the green and blue 
subpredicates of the composite predicate grue. The green component 
is r.-decidable; the blue component is r.-undecidable prior to its 
r. observational 'collapse" via the interdeterministic mecnanism, 
and is no better known to us than the state of a physical quantum 
before we have measured it. Similarly, predicates relevant to 
predictive games may be r,-undecidable and therefore inconfirmable 
by means of (first-order) certainty theory. 

Thus, "certainty theory' is a bit of an oxymoron. As Glidel took 
pains to demonstrate, 'certainty' and "theory' combine to form 
"incompleteness", which stands for uncertainty with respect to 
theoretically undecidable predicates. Since such predicates may 
have everything to do with games like Newcomb's, we are merely 
trading one kind of critical ignorance for another. If, at a given 
time, we cannot possibly acquire additional critical information 
by regressing within r., we must do so in the orthogonal sense... 
through successive r control levels. While the information thereby 
acquired may be disappointingly inspecific, it can be instructive 
concerning the potential Capabilities of "higher entities" like 
Newcomb's Demon. 

Mr. Dicks himself remarks that players 'lacking information 
on a specific predictor-. -are left to speculate on exactly what 
(the hidden influence) might be". Demonic volition and its expres-
sive mechanisms are "hidden influences', and we have already shown 
that all such influences must conform to an unspeculative master 
syntax, that of r. so it is the CTMU, and not 'certainty theory", 
which better encompasses the theory of predictive games. This is 
only natural, since the CTMU is a general theory of that logical 
universe in which 'predictive games' play an integral part. 

The section entitled 'Possible Strategies for a Predictor" 
contains several terms which have figured prominently in recent 
discussions. (1) considers the possibility of a "signal". Signals 
propagate in time, and time entails order. In #48, we described a 
stratification of ordertypes in which our power to differentiate 
(count) can be overwhelmed from above; the dynamical timetype in 
which we formulate distinctions exists within a higher, continuous 
timetype in which it may be arbitrarily extended and re-ordered 
(e.g., by injection of "diagonal elements' like that defined by 
Cantor). The hierarchy of computative timetypes is thus loosely 
analogous to the Cantorian ordertypic stratification. Signals must 
be defined relative to the timetype(s) in which they propagate. By 
the same token, any transmission:: 
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Ronald Hoeflin's new Titan Test. We greet him as: 

Richard Sterman 
3829 Encino Hills Place 
Encino, CA 91436 

The Encyclopedia of Associations has entered a new listing for 
this group. A copy of the notification has been provided by Mr. 
Hoeflin and will be included below. 
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ic, somatic, kinesthetic, news reels, or whatever' - is temporal, 
and subject to stratificative distinctions. These are critical and 
can under no circumstances be shrugged off as irrelevant or unim-
portant. That is why our optimum analytical vantage remains the 
CTMU syntaxification of prediction and control. 

In (2), odds are relativized to the predictor's knowledge. 
This reflects the fact, which I have repeatedly stressed, that 
probabilities are meaningless without formulative relativization. 

In (4), free will is tacitly equated with reduced certainty. 
As certainty must be relativized to the syntaxes of derivation of 
sampling functions, so must free will (this point was originally 
made in The Resolution of Newcomb's Paradox). So free will too is 
meaningless without relativization, and the CTMU - which is the 
first and only theory in which this can be accomplished - again 
dominates any lesser approach. 

Under 'Previously Attempted Solutions*, it is observed that 
'the control (of chooser by predictor) must be broken if chooser 
is to have any hope of equity given a non-altruistic predictor.' 
The breaking of control relationships is closely related to the 
question of demonic competition treated in the last issue. It is 
also subject to a generalized form of uncertainty, r-uncertainty, 
derived as a structural property of r. It reflects the ubiquity of 
undecidability in r, and can be problematic for choosers seeking 
an absolute upper hand over the demons controlling them (or, by 
prediction and algorithmic regression, their outward destinies). 

The proferred solution of Newcomb's problem reflects the 
asymptotic convergence of the expected utility of Cl on 51,000 as 
S./(F.+ 1) —4 Infinity and Prob —4 1 (where S.. F. are the numbers 
of past predictive successes and failures known to the chooser). 
It is not a 'terribly strenuous exercise' because-  it omits many of 
the logical complexities of the problem. It is these of which we 
must not lose sight if we hope to achieve deep understanding. 
Regarding conclusion (I). we have - already mentioned the symmetry 

of the metagame matrix with respect to the chooser-predictor dis-
tinction. Regarding (2), economies are characterized by strategic 
functions in which both competition and cooperation come into play 
simultaneously. The cooperation factor regresses to encompass the 
entire economy, and requires a treatment analogous to the theory 
of n-ary metagames. Regarding (3). the intersyntax translation of 
utility functions is indeed a matter of great complexity. Because 
the situation is relativistic, it calls unequivocally for the CTMU 
resolvency of intersubjective paradox. 

The foregoing remarks are not meant to detract from the merits 
of Mr. Dicks' paper. Despite the inadequacies it shares with other 
methods of its kind, certainty theory does give provisional con-
firmation of some probabilistic hypotheses (that is, of probabili-
ties among the successive instances of which there exist uninter-
rupted dependency relationships analogous to physical causation), 
at least in the majority of decision-theoretic situations. Even 
where undecidable predicates defined on the unpredictable volition 
of demons are consistently active, certainty theory confirms them 
by their recurrent (fl-pseudorecursive) effects; this happens to 
be so for Newcomb's Problem. But were a demon to play insincerely 
for a number of trials, winning and losing 'at random', he could 
still win at will in a manner to which certainty theory is blind. 

I'm sure the other members will agree that George's paper has 
been the occasion of even greater insight than before;  and we may 
therefore express our unreserved gratitude for his input. 

I have just received a letter from Ronald Hoeflin expressing 
his need to address logistical matters like subscription renewals 
and a possible annual meeting. These will be taken up in the next 
issue, which either he or I will be editing. 
(pp. 2, 9-12: copyright 1990 by C.M. Langan. All rights reserved.) 
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