Noesis

The Journal of the Noetic Society
(Issue 53, September 1990)
50 JUNE 1990
Editorial

Ray Wise
122 Scoville Hill Rd. Harwinton, CT 06791 (203) 485-9489

As one ages, time seems to contract. I'm not sure if this is cue to daily living being filled with more responsibilities, or units of time becoming smaller fractions of our lives (probably some combination of the two.) This time contraction came to my attention recently, when I got ready to publish my edition of Noesis. Looking through past issues, I discovered that the last issue I received was November, 1989. I had been dimly aware that it had been a while since the last issue, but to discover that it was nine months was shocking. After the shock dissipated, I wondered why I hadn't received any of the nine issues. Thinking it very unlikely that nine successive issues went unpublished, I surmised that they had been mailed, but never received by me. I remembered that I had moved in December, 1988, leaving a forwarding address with the post office. Apparently, they stop forwarding mail after a year. I must have neglected to inform any of you of my change of address. I apologize for any inconvenience this may have brought to any of you.

I am still very interested in remaining a member of the society, and am taking my appointed turn as editor. There is some uncertainty as to the issue number. The last issue I received was November, 1989. Though unnumbered, that issue was the 43rd. Assuming that this journal has been continuous,
this should be issue 53. I would greatly appreciate the editors of issues 45 through 52 sending me copies at the above address.

I came across same books about words that most of you should find interesting. The first is "There is no 200 in Zoology" by Charles Elster. The title refers to the widespread mispronunciation of "zoology", which most people pronounce as if it had three consecutive o's. The book contains about 400 words commonly mispronounced, and I was quite surprised at the number of words that I've been butchering for many years. The second book is "The Logodaedelian's Dictionary" by George Sassy. This book contains many unusual words, such as gynotikolobomassophile.

I'm sure that most of you are familiar with the classic "Snow plow" problem. (During a steady snowfall, a snowplow starts plowing at noon, plows 1 mile in the first hour, and $1 / 2$ mile in the second hour. What time did it start snowing?) There is a similar problem, in which three plows start plowing the same road at noon, 1 PM , and 2 PM , from the same starting point during a steady snowfall. If the three plows later meet, what +ime did it start snowing? This problem is from the challenging collection "Ingenious", by L. A. Graham.

The remainder of this issue is devoted to several articles I have found interesting, and a probability problem that I spent same time with.

Faith in Fifth Force Fades

The case for the "fifth force" seems to be falling apart fast. Not only has a new experiment failed to find any evidence for it, but two earlier confirmations have now been withdrawn. "We're now saying that the evidence does not support the fifth force," declares Donald H. Eckhardt, who is a physicist at the Air Force Geophysics Laboratory in Bedford, Massachusetts, and a principal investigator on one of the experiments being retracted. "The case has not been established," agree the principal investigators on the other experiment, geophysicists Robert L. Parker and Mark A. Zumberge of the Scripps Institute of Oceanography in La Jolla.

The fifth force is supposed to be a new type of fundamental interaction beyond the four forces-strong, weak, electromagnetic, and gravitational-now known. Empirically, it is expected to show up as a tiny deviation from the inverse-square law of Newtonian gravity. If real, it would require major revisions in current theories.

The fifth force hit the headlines in January 1986, when Purdue University physicist Ephraim Fischbach and his colleagues found apparent anomalies in a 1922 measurement of the gravitational constant by the late Hungarian physicist Roland Eötvös. More direct evidence came from experiments such as Eckhardt's, which was conducted last year on a 600 -meter television tower near Raleigh, North Carolina, and Parker's and Zumberge's, performed in 1987 in a 2 -kilometer-deep borehole in Greenland. In each case, the scientists took gravity measurements at several different levels and found fifth-force type deviations from predicted Newtonian values.

Only one problem: the deviations disagreed in both magnitude and sign, raising suspicions about their significance. And, as Parker and Zumberge point out in the 2 November issue of Nature, those suspicions are well founded. The researchers show that the results of any such experiment are extremely sensitive to the corrections made for the gravitational effects of local geology. Indeed, they claim that equally plausible corrections can account for all the results without a fifth force.

Eckhardt, although skeptical of Parker and Zumberge's analysis, says he now concedes that his original conclusions are wrong for another reason. Subtracting out geological effects requires having ground-level gravity measurements for miles in every direction. But in eastern North Carolina, the survey teams tend to take their measurements by the roadsides instead of out in the swamps. "So you find that the gravity measurements are biased to high ground," he says.
And finally, there is a third nail in the coffin. In the $\mathbf{3 0}$ October issue of Physical Review Letters, James Thomas and his colleagues at the Lawrence Livermore Laboratory report on an experiment performed on a $\mathbf{4 6 5}$-meter tower at the Nevada Test Site, where the geological data are extremely complete. Their conclusion: no fifth force with an accuracy of better than one part in 10 million.

\author{

- M. Mrtchell Waldrop
}

Puzzling Out the Tectonic Plates

Something has to give in the indian Ocem. Massive forces have rouctied of large carthquakes and crumpled the ocean crust in an area south of the Indian subcontinenc. But, addly, all this seismic activiry is taking place in the maddic of the Indo-Auscralia rectonic plate. In classic plate tectonics dheory, eandhquikes are concentrated around the edges of the jowding plates. So bow do vou get such large quakes and so much deformaion where there's but a single plate? What may have to give is noching lest than one or anoeher of the basic asumpoons of plase rectonice.
One such zasumpoion is that plates are always riged and unflerible. Given all the tectonic activary in the Indian Ocean, many geophysicises had asoumed that they had to mate an exception to the rule of place eigisisy-the forces driving the Indo-Austratia plave masp be deforming it and criotoring the seimic acuviry in mid-plore.

Now connas a group of geoplysicists with an atoernixive eplanation. The axive area, they posic, may be a broad, difiase boundry region between two plases moving independently after ill. If these researchers are correct, they will have maintained the novion of rigid piases bur overthrown de clanacal assumption dhax plare boundarice in the oceams ane always narrow.

The group out of Northwestern Universiry argues in 2 fordhcoming iseyse of Tecomise thas dhe Indo-Australia plase in not onse plage but two-the India plate and dhe Austratia place-divided by a boundary $\mathbf{3 3 0 0}$ trlometers lont and a relatively enormous 200 to 1600 kitometers wide. Thax contrats whit the three corivertional typer of bound-tries-the summits of mid-ocem nidgen, deep-sea trenches, and cransform faulothat are thousands of kilometers ling bur only some tens of kilometers wide.
This sprawling boundiary would soct onty look peculiar bur also behsve peculiarty. Where the proposed Indion and Australion plates are thought to be rimming againm each other along the exseern part of the boundary, neisher plase x sinking bencwith dhe ocher, as happerst when the Pacific plase encounters Japen is the Japen trench. At the ochar end of the boundery, where the plown would be polling away from awh ohber, magma does not seem to be welling up to add to each prowing plete, a happen at mid-ocean ridges. Inaeed, the peroive boundery seemil to be deforming slong ine entire length tw pleast jonde ench odher.

Ir's to smprice, berfore, then meny boophysiciser remein uncomvinced To roanc, the propowed boundary in mamething of a scmuricic contrivence. "It's proine something the sise of somens maller plotes and caling it - boundary," noves Sem Sotomon of the Manechwectis Inwiouse of Technoloys. Thove of us who work at plase bounderies don't see much yme in in." He and ocher mould pust as soon cal in deformation in the middle of a nonrigid plate.

But those who uy to underiend how
cight major and a half dusen minor plapes drift around the globe see consuderabie merie in the ides. "The reaion 1 like to think of it as a diffuse boundary," says Richard Gondon of Northwestem Universuy, "is chat in lets us quanofy things and make predicionts."

Indeed, Gordon has already tested one set of predictions derived from the diffuse boundary idea aganst observations and found thar the concepe srands up well. Buiding on earicer work by Douglas Wiens of Washingron Universuty in St. Louss. Gordon, song with Charies DeMets of the Iet Propulston Laborarory in Pasadena and Donald Argus of Northwestern. gauged how the putanve boundry between ohe Indaa and Australia place: should behave given what can be determined abour the mocions of the surtounding plates.
Gordon and his colleagues calculaced the rate of place moxon during the pest 3 midion years from the record of Earth's Alipflopping magnetic field frosen inso the crust as it concinuously forms and speeade away from the mid-ocean ridges, much the way a eape recording ta made. They gauged the direction the plates are moving from the onsentation of sea-floor transform tauts, which poise in the direction of spreading, and from the oriencaon of eartisquikes on the transform fauta.
From such indicamen, Gordon and his colkeggues measured the

The ploten beters and aler. The cowver

 d). Semier of rexnm motions of all the plaver

 twowl trualiry (herchel) berween athem.
 uncran motion of the presurned Incia plate relactive to the adiacent Africa and Arabia plates and the motion of the presurned Auscralia piace relaoive to the Africa and Antarctaca plates. From this, dey calculated whar the mocion berween the India and Ausiralia piates should be. Towand the easten end of the boundary, thry prediceed thax the places are converging ax a slow bux measurable 4 ± 3 millimeters per year. Thax fics the parvern of eardiquaties, fautos, and undulacions in the sea floor in thas area. Near the boundary's wescern end, the plases should be pulling away from eech other at 6 ± 2 millimeters per yew. Then aloo fiss the obeerved pattern of finloing there.

Although the succers of these plate motion predicions would socms to justify the daing that the region is a new, difuse boundery, ther does not answer Soliomon's fundernoniol complaine-"It doesn't tell us why anyhing a all io happening

Everyone agrees dux the eardhquakes and deformation along the equatorial Indian Ocem are ulcimwely related to the Himalaym 2500 kilometers to the north. Something about the strain of riving the world's highear mouporin range by colliding the Indian plate with Anis has overwhelmed a portion of the plate. The final answer should lie in the decailed history of place motions and plare behavior prescrved in the sedh. ameres and crum of the Indian Ocean. Gordon leaves this spring to gather more of that hisoory from this ocemogrophic hinkerland.

The firm game which the "mature" DEEP THOUGHT has lou to another program. Appropriately in is the very positional, ever-dangerous MEPHISTO X program which achieves this fem against the tactically ferocious DEEP THOUGHT. The game follows a quiet course whereby Black never quite equalizes from the opening. White enjoy n a strong, olid center which in never relinquishes. The reader may recall that MEPHISTO X salmon beat DEEP THOUGHT an lan year's 19th ACM NACCC in the same round with the same colon.

1 de dy 2 ct dee 3 NS S
MEPHISIO X follows the more solid, traditional lines of the Queen's Gambit Accepted which can also give White a nice ed er.

It is better to "lowe" the bishop on go and recapture with the h-pawn with pliny on the half-open h-file.

10 Net Net 11 NS NaG 12 Bbs Def?

A very poor placemen of the queen, interfering with the development of the king'a bishop. Indicated is $\mathbf{1 2}$. .cs with counterplay. As the game continues, Black never gets to play the lever. . .cs.

13 Id hS 14 Ag hag $15 \mathrm{~h}-\mathrm{g} 40-0-0$ ts Bat bc?

Could Black really be a 2551 player? Why weaken the White squares around the kine voluntarily? Indicated wat 16 . . . Nb 6 or Kb8.
17 Bbs
The ensuing trade of this bishop seems unnecessary, but if $18 \mathrm{Ba3}$, DEEP THOUGHT may get nome counterplay with . . .es. White should just try to play Rel, Qed, Bet and exploit the weakened white squares.

17. . .as 18 Bod 6 Od 19 Qed Be 20 O-0-0 Dhs 21 Nd cf

This pawn remains weak throughout the game and MEPHISTO X quietly exploits this.

Black could not play 25 . . .cs because of 26 d 5.

26 Bet Kb7 27 Be 4

MEPHISTO X plays directly and simply. It in not the world's mont tactical program, and over the years it has appeared reluctant to play line-opening pawn thrusts. Here $27 \mathrm{d5!}$? is one much try, but there could follow 27 . . e:d5 28 B:d5 Ne $29 \mathrm{f4}$ gif $30 \mathrm{e}: \mathrm{f4}$ Qd7! and perhape MEPHISTO X's decision not to play 27 d5!? is correct.
27. . Nb e mt Nd Od 29 163

Quite a sobering but disappointing move. It cannot be proven here, but intuitively in would seem that 29 Nc!! mut win. There are lines like 29 . . bs 30 Ne Qed (30. . GdS? 31 Bbs) 31 B:b5 c:b5 32 Qc + with a winning attack. Benidea 30 Ne there is the threat of 30 Q83 hitting 66 and as. It is probable that DEEP THOUGHT nw these ponsibilitica against it elf.

Back in my college days, I used to play poker fairly regularly. One of the players insisted that in 7-card stud, one had a better chance of getting a straight than one had fior three of a kind. There are many books that give tables of : he distribution of possible hands for 5-card stud, but I've never seen the distribution given for 7-cards. This problem was on my list of things to get to for many years, and I've finally been able to spend same time on it.

If you look at a seven card hand, the distribution of the card face-values is as follows:

4,3	$\mathrm{C}(13,1) \mathrm{C}(4,4) \mathrm{C}(12,1) \mathrm{C}(4,3)$	624
4,2,1	$\mathrm{C}(13,1) \mathrm{C}(4,4) \mathrm{C}(12,1) \mathrm{C}(4,2) \mathrm{C}(11,1) \mathrm{C}(4,1)$	41184
4,1,1,1	$\mathrm{C}(13,1) \mathrm{C}(4,4) \mathrm{C}(12,3) \mathrm{C}(4,1)^{\wedge}$	183040
3,3,1	$\mathrm{C}(13,2) \mathrm{C}(4,3) \sim 2 \mathrm{C}(11,1) \mathrm{C}(4,1)$	54912
3,2,2	$\mathrm{C}(13,1) \mathrm{C}(4,3) \mathrm{C}(12,2) \mathrm{C}(4,2)^{\wedge}$	123552
3,2,1,1	$\mathrm{C}(13,1) \mathrm{C}(4,3) \mathrm{C}(12,1) \mathrm{C}(4,2) \mathrm{C}(11,2) \mathrm{C}(4,1)^{\wedge} 2$	3294720
* 3,1,1,1,1	$\mathrm{C}(13,1) \mathrm{C}(4,3) \mathrm{C}(12,4) \mathrm{C}(4,1)^{\wedge}$	6589440
2,2,2,1	$\mathrm{C}(13,3) \mathrm{C}(4,2) \wedge 3 \mathrm{C}(10,1) \mathrm{C}(4,1)$	2471040
* 2,2,1,1,1	$\mathrm{C}(13,2) \mathrm{C}(4,2)^{\wedge} 2 \mathrm{C}(11,3) \mathrm{C}(4,1)^{\wedge}$	29652480
* 2,1,1,1,1,1	$\mathrm{C}(13,1) \mathrm{C}(4,2) \mathrm{C}(12,5) \mathrm{C}(4,1)^{\wedge} 5$	63258624
* $1,1,1,1,1,1,1$	$\mathrm{C}(13,7) \mathrm{C}(4,1)^{\wedge}$	28114944

The total of these figures is 133784560 , which $=\mathrm{C}(52,7)$ This is all very straightforward, but the complexity enters when you consider that the entries marked with an asterisk also include straights, flushes, and straight flushes. I extracted these "pat hands" from the four entries under consideration using methods that left me less than fully satisfied. If any of you has an elegant way of doing this, I would relish hearing about it. For now, I will list the values I extracted.

	St. Flush	Flush	Straight
$3,1,1,1,1$	600	76620	50600
$2,2,1,1,1$	3600	459720	226800
$2,1,1,1,1,1$	20472	2079912	2530440
$1,1,1,1,1,1,1$	16912	1431392	3372180

Combining these two tables, the results are as follows:

St. Flush	41584
4 of a Kind	224848
Full House	3473184
Flush	4047644
Straight	6180020
3 of a Kind	6461620
2 Pairs	31433400
1 Pair	58627800
No Pair	23294460

Though it is a very close race, it is more likely to get 3 of a kind than a straight in 7-card stud. Interestingly, it is less likely to get no pair than it is to get 1 or 2 pairs. Of course, this may have been nothing more than an exercise in futility, for I haven't played poker in quite a few years, and I have no desire to begin again. This was just one of things that I wanted to know.

cont. From (5)

 gi eff 37 0, 5
The game hat alien another course since the previous note, but White sill enjoy t a comfortable edge via the solid central pawn chain and control of the h-file which Black once owned.
 BeT 44 Rel
Despite the foregoing exchange of rooks, White has made inroads into Black's position which is somewhat tangled.
44. . Kc 7 45 NBS Eds 46 Ne gt 47 Ohs + Kc 7 48 Rd Kb 49 N:c6! Finally MEPHISTO X finds a tactical coup which converts its positional advantage into a material win (a pawn). If now $49 \ldots \mathrm{~K}: c 650 \mathrm{Qa8}+\mathrm{Kd6} 51 \mathrm{Qb8}+\mathrm{Kd7}$ (or Kc) 52 Bat + and wine.
49. . Qed 50 Ques NeT 51 Qed Qed 52 Que ft 53 eff Qed 54 Qed Q dit + Black's checks quickly run out.

55 Ked fir 56 Of Of 57 Kc 2 Rc 58 Mes Nd?

This loves quickly, but there was little Black could do to mop the f-pawn in any case.

Packing Your n-Dimensional Marbles

Some of the quescons madiematicians ask sound silly: How many penaics can you lay on a tablerop? How many marbiks will tit into a semi-traiker?
At ocher tumes the same bask qucstion takes a somewhar more serious form: How many digiad signals can occupv a noisy channel?
A recent discovery by Noam Elaces, a mahernationn at Harvard Universov, has given resesarctiers new unsighe into the machemazkal dreory diak encompasies all dree quesnoms. Elleses's result is an unexpected applicacion of a branch of number heorv to a geomerric probsen tnown as sphere pactings.
Sphere pactung, in mathemarical periance, is a problem of cramming an ndimensional space whth indimensional "spheres," tll of the same suze. with the leass amount of empey space in berween. Coins are a good exampte of two-dimensional "spheres" (cuncles); marbies arc examples in atree-dimenisional space.

In the mathemacoal dreory that underices teiecommunicuion, a digirized signal is encoded as the coondinames of the cencer of a hugher dimecrsional sphere paiked in a hugher dimensional space. Aftuer tramimeon down a noisy channel, the sugnal mav no longer be evactity at the ceneer, bex as long as mi's sall within de sphers, de receiver can remore in wo the cericer and read the signal exactly.
The casicat way mo keep abe regnil clear would be so upace des spheres tiar apart. But thay's wasteful. The phone company can satisfy is cusconers and stockhowders

 everyone wancs is the bext way 10 pack spheres ineo the space ther problem occuptes.
surprisingty-given iss wide applicacions-dhe problem has so tac onty been solved in die sumplesk case: that of two dimeneons, where the penacs fill 90.69% of the tabletop. In dree dimensions the obvious candidise is the face-centered cubic paxiving of spheres betoved of crysurlographers and fruir vendors
Now, nobody is berwing aganas ine face-cenocred cuboc packing as the bess possible solucion, but so far no one has been able wo give a rigorous proof than there's noctung berter. And in the really formidable dimensiona--above 2 thouand, say-mathemaricians ane x a lows. We don't know a beruer way of packing spheres than just puiking dhem x random uncil dere's no roon kff," Elties says.
Although new sphere packings are discovered all the tume, mose of them have conc from standard techniques in the subject. Elticis's approsch. on the other hand, is brand new. It is based on dhe theory of ellipicic curves, a branch of number cheory that is concernod with finding solutions of cerram polynomal equasorss. Though a newconer wo sphere pacting. Elicia is an expert on ellipeic curves; 2 years ago he applied athe sume hoory to solve a 200 -year-old probicm relued to Fermar's Last Theorem.
 callod a latise, to serve as dhe cencers for his spheres. These isucces have been long familier no number dheoriva, bux no one had booked an dheir sphere-packing properices before. Not every cllipois curve has de right kind of hance, and part of de trict was foding the ones then do.
Theonerically if's quice acxing," says Andrew Odyzko, head of de Machemancich of Comaminicioion and Compricer Sysuens Deparument as Betl Laborstones in Murrny Hill, New leray. "If's a new way of approaching a famous unsolved problem."
Elkus' naw packings may or may not be dus bex pomable-his work docsi't addresu dhat imese-bax dhey do pive improwemene on the best mecthods known so tir in a number of dimentionas, the loribst being 1024. In several other cases his approsch agrees widh the previoum besk known pectingo-noably in dimenaion 24, whach has a surpoisingly efficiene pecting kiown as die Leoch latioc. (Sones new computcr moderns matke une of the Leech laxtioce sphere pecking.)
Elice's divovery hee no immediane practical application, says Odiyzko, "but that mught change." For ons thing, thoorecicinas are coying with the sdea of upgradeng moderse wo work in higher dimencional speces. Bur whectier it has immediace applications or noc, Ellicis' new diecovery certainly give mademancians more space no play around in.

- aneri Cipha

Bery A. Ciper is a coumburing correspenden of Science.

