October 1990
 Issue 54

NOESIS

THE MONTHLY JOURNAL OF THE
 ONE-IN-A-MILLION SOCIETY

Contents

Editor's page, by Ronald K. Hoeflin 2
Puzzles, by James Hajicek 3
Cartoon, by Bill Irvin 10
Letter to the editor, by Grace LeMonds 11
Publisher \& Editor

Ronald K. Hoeflin
P. O. Box 7430
New York, NY 10116

Editor's Page

New editor soupht: I will probably give up the role of editor of this joumal after putting out issue 56 (the December 1990 issue). I have asked Ray Wise if he would like to take over as editor because his recent issue seemed to me to have the sort of variety and intellectual content that I have traditionally tried to include in this joumal. I have not yet had a response from him. If anyone else would be interested in the position, let me know. If there are no volunteers, this journal and society will probably be terminated after issue 56 . There is not sufficient intellectual or monetary feedback from the members to give me personally sufficient incentive to contimue, but the group may have sufficient value to one of you to warrant your investing the time and energy to perpetuate the group. I will send the names and addresses of all current members and subscribers to anyone who agrees to take over as editor. The first person to volunteer will get the job unless I have strong reason to believe you cannot handle it. George Dicks, Jr., for example, has promised to send me material for the journal on several occasions, and has actually claimed to have sent such material, but the promised items (including many back issues of the Mega Society journal that I loaned him) have never materialized, so clearly he lacks the sort of reliability you would want in an editor. C. M. Langan was highly reliable, but his issues were too focused on his own personal interests. Also, he never, to my knowledge, provided any member with his phone number, making him less accessible than would be ideal for an editor. An alternative to perpetuating this society would be for members to join the other one-in-a-million group, the Mega Society, as several of you already have. I am told it published its journal 3 or 4 times a year. If interested, contact its coordinator Jeff Ward, 13155 Wimberly Square, \#284, San Diego, CA 92128.

Refunds: Those menbers who paid $\$ 20$ for a full year's subscription to this journal (issues 51-62 rather than 51-56) will be sent a $\$ 10$ refund, which they may then send to the new editor, if we find one. As indicated in issue 52, page 2, these people are as follows: Anthony J. Bruni, Richard May, Richard Sterman, S. Woolsey, and Jeff Wright. Since then, we have also had a $\$ 20$ membership from Kjeld Hvatum and Marilyn vos Savant. I will gladly substitute a 6-issue subscription (or extension of subscription) to In-Genius in lieu of these refunds. Your subscription to In-Genius would start with issue 25 (January 1991) mless you specified otherwise. All back issues of that journal are still available. It was published monthly from July 1989 to Jure 1990 and twice monthly since July 1990.

Non-member subscribers: The new editor will have the option of including or excluding non-member subscribers on his or her mailing list. There are currently 14 members and 20 non-member subscribers. I believe the latter ought to be retained, if possible, because they may be able to provide valuable financial as well as intellectual input to the group.

In this issue: I have included in this issue all of the puzzle colums that our menber, James Hajicek, did for the Triple Nine Society journal, Vidya. The last two pages of this issue consist of items that appeared in issue 19 of my journal, In-Genius.

Puzzles: \# 1

James Hajicek
589a Sorinn Valley Rd. Burlington, WI 53105

It is my inteation to begin a puzzle section, otartinc with this issue. Readers are encouraged to submit puzzles for publication. Original puzzles are of course preferred, but it is best to have material which is ingtructive and educational rather than merely a diversion. An ideal puzzle has an edifying princifle embedded in its solution.

The solutiona to each month's puzzles will be given in the next issue. If possible, readers who send correct solutions to we will be credited.

In lieu of solutions this month, the following geosetric proof of the Py thagorean theorem should be of general interest, as it is not too well known. With the existence of a proof this aimple, there is no reason for this theorem to be taught in school without a proof being given. for any right triangle with sides a, b, and hypotenuse c, consider the two squares shown here with sides ol length a. b. Since these have equal areas, removing the four equal triangles from each must leave equal areas remaining. Thus $a^{2}+b^{2}=c^{2}$.

1. As is well known, the integers 3, 4 and 5 gatiafy the equation lor the sides of a right triangle, as $3^{2}+4^{2}=5^{2}$. How can one eapily generiste (without using a computer) many more integer examples of right triangles? Note that we want a variety of interesting solutions, not just simple multiples.
2. The three dimensional analog of the Jythagorean theorem is $s^{2}+b^{2}+c^{2}=d^{2}$. Here d is the diatunce between two points separated hy diftutacon u, b, and c alonf. three mutually perfendicular axes. ao in the firat problem, how cun one t ind a variety of integer solutions to this equation?
3. While we are on the subject of triangles, who out there knows (or can find out) the formula for the area ot a triangle of arbitrary oides a, b, and c ? Nost people go through their entire lives without realizing that such a formula exists.
4. It is common to expect enswers to problems to be given in the simplest form. Yor example, fructions should be reduced when possible. The following two expressions huve a clumay equare root within a squere rool. Can they be similified?

$$
\sqrt{5+\sqrt{24}}
$$

$$
\sqrt{31-\sqrt{840}}
$$

Puzzles: \# 2

James Hajlcek
5894 Spring Valley Rd. Burlington, WI 53105

1 am sorry about missing the deadline for the last issue. It is difficult to allow time for reader response and still have monthly column. There were many correct solutions subaitted: (4) Donald Vanderpool, Howard Vein, Eugene Primoff, Larry Vikander, Alfred Simpson, Craig Barrington, (3) Ronald Deep. Thomas Burnhan, Paul Cook, Name Withheld, (2) Gerald Baker, Rick Magnus, Stephen Jaworowicz, Jack Lawless, (1) Bill Bergdorf; John Pearson, Jere Guin, Charles Ramsey.

Solution 1. To generate integer solutions to $a^{2}+b^{2}-c^{2}$. For any integersmand n, use (a, b, c \quad ($\left.2 m n, m^{2}-n^{2}, n^{2}+n^{2}\right)$. It can be proven that this will generate all of the relatively priae solutions.

Solution 2. To find integer solutions to $a^{2}+b^{2}+c^{2}-d^{2}$. A great variety of methods were were received for this, mostly a special case of the foraula contributed by Donald Vanderpool (a, b, c, d). ($m p-n q, m+n p, m^{2}+n^{2}-p^{2}-q^{2}, m^{2}+n^{2}+p^{2}+q^{2}$). This ippears to generate all of the relatively prime solutions. My original idea is also a special case of this with $q=0$, which can be proven to generate at least some multiple of every solution. Another interesting idea, based on a contribution by Alfred Simpson, reduces this problem to the first
 x, y, z which satisfy $p^{i}+q^{2}=r^{2}$ and $x^{2}+y^{2}=z^{2}$.

Solution 3. To find the area of a triangle given the lengths of three sides. If the area is expressed in terms of the base and height, the height can be eliminated by using the Pythagorean theorem. Then

$$
\begin{aligned}
A & =\frac{1}{4} \sqrt{2 a^{2} b^{2}+2 a^{2} c^{2}+2 b^{2} c^{2}-a^{4}-b^{4}-c^{4}} \\
& =\sqrt{s(s-a)(s-b)(s-c) \quad \text { where } s=\frac{1}{2}(a+b+c) .}
\end{aligned}
$$

The second expression was the one most often contributed by the readors, who tell me that it is known as Heron's formula.

Solution 4. To simplify nested square roots. The following may be verified by squaring both sides of the equations:
$\sqrt{5}=\sqrt{24}=\sqrt{3} \cdot \sqrt{2} \sqrt{31-\sqrt{840}} \cdot \sqrt{21}-\sqrt{10}$.

Problem 1. For what values of f and n is the following description valid? A polyhedron consists of faces of equal size and shape, each a rhombus with angles A,B,A,B. Meeting at each vertex are either three type A angles or else n type Bangles.

Problen 2. We have two flasks. One measures 20 fluid ounces, and the other measures 17. We can fill flask from water source, transfer from one flask to the other, or empty down a sink. Without making new marks, how many fills, transfers, and empties are required to measure out 1 ounce? How about 2 ounces?

Puzzles: \# 3

> Jaree Hajicek
> So9t Spring Valley ad.
> Burifinton, WI 53105

Scores on the two probleme from Iasue 65 are as follows; (2) steve Offner, Larry Vikander, Chriatopher Burch, John Bowall, (1) Fiederick Miles, Stephen Jaworowics, Wane withheld. There vere aleo three people who deserve at least balf credit on the econd probles, solving corcectly for 1 ounce, but who fell into the trap of continuling with the same method for 2 ounces.
solution 1. To find eeni-regular polyhedra with chombus faces. suler'a formula ayg that any polyhedron with f faces, edges, and v vertices must satiafy $t-t v=2$. Every face has i edges ghared with two other faces, E 48/2. Every face has 2 verticies ehared with 3 other facea and 2 verticies chared with n other races, $v=2 f / 3+2 f / n$. solving, $t=6 n /(6-n)$. Solutiona for (n, f) are $(3,6),(4,12)$, and $(5,30)$. The englea of the chonbuses were not requeated, but vill be of interest to anyone who wishes to build models, to here are my calculated values. of course $A+B=100^{\circ}$. For $n=3, i=g=20 \%$ For $n=4$, coa $B=1 / 3$, or $=70.53^{\circ}$. Por $n=5$, cos $m=\sqrt{5 / 5}$, or $=63.43^{\circ}$.

Solution 2. To meazure out 1 fluid ounce, using tlaske bolding 20 and 17. The following chart lists the step, the operation (Fill., Transfer, or Empty), the contente of the 20 ounce flast, and the contents of the 17 ounce tlask:

The same method can be continued onmard to measure 2 ounces, but there is a shorter method:

Problen 1. This was suggested by another member. A man atarta from the point where the prime meridian crosese the equator, and waltit 45* northeast, coastantly correcting hif couree vith geographic compaas which alwaye points toward the geographic pole. Hevalks with equal facility on land, mater, and lce. Mountaine do not deflect bim from his course. Does he reach an end point? If so, where, and how far will he have travelled when he gete there?

Problen 2, Thit was given to me in 1980 by a co-worker. In a doublea match tournament 16 players each play 15 gamen vith different partner each tiae. Each player has each other player as an opponent exactly two times. Find a uitable paicing arrangement for the 15 rounde of 4 games per round.

Solutions to these problens will be given in leaue 69, but don't take too long to aubait your contribution.

Puzzles: \# 4

```
Jamea Hajicek
5894 Spring Valley Rd.
Burlington, WI 53105
```

Scores on the two problene from 1 ssue 67 are as follows: (2) Tom Davidson, Raymond Burhoe, (l) Walter Kopp, Craig Barrington, Laryy Vikander, Steve offner. Wev problems will be given in the next lasue.

Solution 1. To find the length of curve, gtarting the the equator, with a conetant 4° heading. Walter Kopp informs us that this if called a loxodronic curve. See also rhumb line in your dictionary. The curve epirala around the north pole, nakingian Infinite number of loops as it approaches the pole. However, the total length of the curve if finite. Without attempting to conatruct the exact curve, the following argument is sufficient to obtain the length L. For each distance traveled. d, the pole is approached by an amount equal to d cos 45°. Thia is true for infinitefinal diatancer at all pointa, and is therefore true in general. Thum $C / 4=L$ cos 4°, where C in the circunference of the earth and cos $5^{\circ} \cdot \sqrt{2} / 2$. Finally. $L=\sqrt{2} C / 4$.

Solution 2. To find a pairing arrangement for a doublea match tournament for 16 players, so that every player has different partner each ties, and so that every player has every other player as an opponent twice. My solution is more complex, but three people submitted mome variation of the method given here. The players are identified with letters from A to P. The 16 players are then split into 4 groupe, 5 different ways, such that no two groups have two players in common. Each group then plays three rounde among themelves, paifing in different waye.

Split 1
Group 1
Group 2
Group 3 Group
Round
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

A BCD
E G \boldsymbol{E}
1 J L
M NOP
Game 1
$A B=C D$
AC C B D
$A D=B C$
AE - IM
A I - EM
A $\mathrm{H}=\mathrm{E}$ I
A $\mathbf{H}=\mathrm{E}$
A $\mathrm{E}-\mathrm{P}$
$A \mathrm{P}=\mathrm{FR}$
A $\boldsymbol{G}-L \boldsymbol{L}$
AL-GN
A M-GL
A $\boldsymbol{H}-\mathrm{J} O$
A J - HO
A O-E J

Split 2
$\begin{array}{llll}\text { A } & \text { E } & \text { I } & \text { M } \\ \text { B } & \text { F } & J & \text { N } \\ \text { C } & \text { G } & \text { R } & \text { O } \\ \text { D } & \text { H } & \text { L } & \text { P }\end{array}$
Gane 2

Split 3
$\begin{array}{llll}\text { A } & \text { F } & \text { K } & \text { P } \\ \text { B } & \text { E } & \text { L } & \text { O } \\ \text { C } & \text { H } & \text { I } & \text { N } \\ \text { D } & G & J & \text { M }\end{array}$
Gane 3

I J - K L
IL-JK
C G-K 0
CK-GO
C O-G K
C H-IN
C I- ${ }^{\text {a }}$
C M - I
CE-JP
C J - P
C P-EJ
C F -L L
C L - F

Split 5
A HJO
B G I P
C F L M
DEKM

Split
A GLN
$\begin{array}{llll}\mathrm{B} & \mathrm{H} & \mathrm{I} & \mathrm{M} \\ \mathrm{C} & \mathrm{E} & \mathrm{J} & \mathrm{D}\end{array}$
D F I 0
Game

Puzzles: \# 5

Jamen Hajicek 5894 Spring valley Rd. Burlington, HI 53105

The probleas given bere this month are intended to illuttrate some of the curtent research in artificial intelifgence. solutions will be given next month, with no time for reader respone.

Problen 1. The following logic problem was presented in 1978 by L. Schubert of the University of Alberta as challenge for automated reasoning computer programs. It became known as schubert'e steamroller" when it was found to be too hard for the exiating theoren provere because it has a large eearch space fone the asamptions are variously combined in an unineplied way). It resisted automatic solution until 1984, when an automatic theoren prover was constructed using more advanced principles. See Walther, C., A Mechanical Solution of Shubert'a Steamroller by Many-Sorted Resolution," Proceedinga of the National Conference on Artificial Inteliligence, August 1984.

Wolves, foxes, birda, caterpillara, and snaile are animals, and there are aome of each of then. Also there are some grains, and graine are plants. Buery animal either likes to eat all planta or all animals auch maller than itself that like to eat some plante. Caterpillare and enalla are much maller than birde, which are much smaller than foxes, which in turn are much smaller than wolves. Wolves do not like to eat foxes or graine, while birde like to eat cater plliars but not enalle. Caterpillars and enalls like to eat mome planta. Prove that there ia an andmal that likes to eat geain -eating animal.

In order to make this a puzzle, let us ask, "What anianl is it that likes to eat what grain-eating anieali" although 1 truat that our members will not find this problem overly difficult, it lllustrates the current level of mechine intelligence for probleme of this type.

Problem 2. Logic circuit design it replete vith problena, some practical, and some (like this one) merely anusing. Here is one taken from the book Automated Reasoning. Introduction and Applications (Prentice-tali, 1984) by Wo , Overbek, Lusk, and Eoyle. This book is filled with examples of how various puzzles and probleme are formulated in sabolic logic for computer solution. It is an excellent introduction to this topic, eepecially if one has some previous knowledge of symbolic logic.

Logic algnals are carried on wires, and aréeither a sero or a one. An inverter" has one input and one output, the output being the opposite of the input. An and gate" has two inputs and one output, the output being a one if both of the inputa are one, and a aero otherwise. An or gate" has two inputs and one output, the output being a one if ither or both of the inputs are a one, and a mero othervise. The problem ia to design a circuit with three inputs and three outputs, each output being the opposite of the corresponding input. cleariy this can be easily done vith thre einverteris, but the problem is to do it using only two invertere plus a inimum of "and gates" and or gates."

Puzzles: \# 6

James Hajicek 5894 Spring Valley ad. Burlington, WI 53105

Here are the solutions to the probleas in lasue 70. New probleme will be given in the next lseue.

Solution 1. To find what animal likes to eat what grain-eating animal. The key assumption is every animal either likes to eat all plants or all animala much maller than itself which like to eat mone plants." This is used thre succesive timef in the following abbren viated proof.

There are sone enails, and snalle et some plants, and snaile are much mallet than birde, but bisda do not like to eat anails. Therefore, birde like to eat all plants. There are mome grains, and graina are plante. Therefore, birds are a grain-eating animal.

Wolves do not like to at graine, and there are sone grains, and grains are plante. Therefore, wolves like to eat all animale much smaller than themelves which eat some plants. Nolves do not like to eat foxes, which are much maller than wolves. Thereforef foxes eat no plants.

Foxes eat no plants, and there are some plants (grains). Therefore, foxef ilke to at all animals much smaller than italf which like to eat some plants. Birds are auch galler than foues, and eat sone plants (graine). Therefore, foxes eat birds.

Solution 2. To invert three signal lines using only two inverterg, plus ainimum of additional orgates and and-gates. The key to solving this problem is in determining which two eignals should be inverted. They ares the signal which says that two or three of the inputs are one, and the signal which says that one or three of the inputs are one. My best effort on this problen used 26 additional gates. The computer-agaisted solution, from the book Automated Reasoning, requites only 25. While atudying this, I digcovered fory dimeny simplification which requires only 24, as followit

Puzzles: \# 7

```
James Hajlcek
5894 Epring Valley Rd.
Burdington, MI 53105
```

There is a close connection between puzzles and games (that is, two perion gages with complete information), because every game position is puzzle to determine the best move. Playing a game is like solving a sequence of puzzles. Equally, every gane position is - pusile to deterinine which player (if any) can force ain.

In the following two game positions ve would like to know which player, A or B or nelther, can forcefully win the galee. Alto, there are two alternatives to be consideredi assuaing that player a has the first move, and assuming that player B has the first move. Our readers ace invited to gubsit the solutions to me, and vill give credit for corcect solutions in following issue.

The rules of the two games are the same. I call either gane "The Web. " The two players each have one piece, located at same vertex of the web. The players take turne moving their plece one step in any direction along the lines of the board. The game in won when one player captures his opponent's piece. The opponent's piece may be captured when it is nert to the player 's piece, so that the player can move one atep into the apot occupied by the opponent. reatoving the opponent's piece from the board.

"It just seems like an awful lot to go through to end up with nothing. "

Ronald K. Hoeflin, Ph.D.
P. O. Box 7430

New York, NY 10116
Dear Dr. Hoeflin:
Thank you for the very interesting packet of mail I received today as an editor of a Mensa publication. I will reply to that information at a later date.

In the meantime, as an Educational Diagnostician in the State of Texas (psychometrician, in other states), may I correct you on one vital point? The ultimate score on the Stanford Binet Test of Intelligence is 136, using the 1972 norms. It was 147 on the 1960 norms.

Unless there are new norms of which I am unaware, 136 is the only score possible within the 99 th percentile. 132 through 135 delineate the 98 th percentile ranking.

Sincerely yours,

